Recent progress in organic nano-composites: Synthesis and treatments for use as active layers in electronic devices
Keywords:
Density functional theory, photovoltaic cells, single walled carbon nanotubesAbstract
The present work represents an overview for organic materials and their nano-structuration using carbon nano-tubes. Particular attention is allowed to the polyaniline polymer and single walled carbon nanotubes which are the subject of our theoretical and experimental investigation after their functionalization. In the other hand, we give a detailed report concerning the previously used synthesis methods, incorporating polymers and carbon nanotubes. In fact, the functionalization process needs some technical treatments including purification, nanotubes dispersion and alignment on the organic matrix. Therefore, we give a detailed description of physical and chemical methods used to achieve the functionalization process. Moreover, the aptitude of organic nano-composites for the use as active layers in electronic devices, especially in electroluminescence and photovoltaic conversion is also discussed and evaluated by comparison to those of inorganic conventional semi-conductors. The second section of this present work represents a correlation of experimental and theoretical results obtained in our laboratory on the Polyaniline/ single walled carbon nanotube as a prototype of organic nano-composite. The study is focused on the evaluation of the properties of the charge transfer between both components. In this context, Polyanilineemeraldine base (PANIEB) is doped with sulfonic acid in Dimethyl formamide (DMF) solvent and mechanically functionalized with single walled carbon nanotubes (SWCNTs). A systematic vibrational and optical study is achieved as a function of SWCNTs weight concentration. Also, Fourier transform infrared (FTIR) analysis and optical absorption (OA) measurements were achieved. Our aim is to evaluate the functionnalization process between both components and to elucidate the corresponding changes on the optical properties. In this context and to support the charge transfer from doped polyaniline to carbon nanotubes, analogous theoretical study based on Density Functional Theory (DFT) is carried out. This study is based on the optical and vibrational Received: 11th January, 2017; Accepted: 3 rd February, 2017; Published: 28th February, 2017 Int. J. Exp. Res. Rev., Vol. 9: 11-46 (2017) 12 calculations. Principally, spin density distribution, atomic charge and bond length modifications from ground to oxidized state are used to supports the grafting process. The correlation structure-properties obtained either experimentally or theoretically evidences that the resulting composite exhibits good photovoltaic properties.
References
Aleman, C., Ferreir, C. A., Torras, J., Meneguzzi, A., Canales, M., Rodrigues, M. A.S, Casanovas, J. (2008).On the molecular properties of polyaniline: A comprehensive theoretical study.Polymer. 49: 5169- 5176.
Alimi, K., Zaidi, B. and Chemek, M. (2011), About Grafting of Single-walled Carbon Nanotubes on the Oligo-N-vinyl Carbazole and Copolymer Involving N-vinylcarbazole and Hexylthiophene, Book chapter, Intch Open access, Carbon Nanotubes – Polymer Nanocomposites. Pp. 300-330.
Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I., and Hersam, M. C. (2006). Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology. 1: 60-65.
Arnold, M. S., Stupp, S. I., Hersam, M. C. (2005). Enrichment of single-walled carbon nanotubes by diameter. Nano Letter. 5: 713-718.
Ayachi, S., Alimi, K., Bouachrine, M., Hamidi, M., Mevellec, J. Y. and Porte, J. P. L. (2006). Spectroscopic investigations of copolymers incorporating various thiophene and phenylene monomers. Synthetic Metals. 156: 318.
Ayachi, S., Ghomrasni, S. and Alimi, K. (2012). A combined experimental and theoretical study on vibrational and optical properties of copolymer incorporation g thienylenedioctyloxyphenylene and bipyridine units. J. Applied Polymer Science. 123: 2684.
Azazi A., Mabrouk A., Alimi, K. (2011). Theoretical investigation on the photophysical properties of low-band-gap copolymers for photovoltaic devices. Computational Theoretical Chemistry. 978: 7-15.
Baibarac, M., Baltog, I., Lefrant, S., Mevellec, J.Y., Chauvet, O. (2003). Polyaniline and Carbon Nanotubes Based Composites Containing Whole Units and Fragments of Nanotubes. Chemica Materials. 15: 4149- 4156.
Becke, A. D. (1993). Density functional thermochemistry. III. The role of exact exchange .J. Cheical Phyisics. 98: 5648.
Bejbouji, H., Vignau, L., Miane, J. L., Dang, M. T., ElMostafa, O., Harmouchi, M., Mouhsen, A. (2010). Polyaniline as a hole injection layer on organic photovoltaic cells, Solar Energy Materials and Solar Cells. Solar Energy and Mateials Solat Cells. 94: 176- 181.
Boncel, S., Koziol, K. K. K. , Walczak, K. Z., Windle, A. H. , Shaffer, M. S. P. (2011). Infiltration of highly aligned carbon nanotube arrays with molten polystyrene. Materials Letter. 65: 2229-2303.
Bonard, J. M. , Stora, T., Salvetat, J. P., Maier, F., Stockli, T. and Dusch, C. 1997). Purification and size selection of carbon nanotubes. Advanced. Materials. 9: 827-831.
Bourass, M., Benjelloun, A. T., Benzakour, M., Mcharfi, M., Hamidi, M., Bouzzine, S. M., Serein-Spirau, F., Jarrosson, T., Lère-Porte, J. P., Sotiropoulos, J. M. and Bouachrine, M. (2016). The Computational Study of The electronic and Optoelectronics Properties of New Materials Based On Thienopyrazine For Application in Dye Solar Cells. Journal materials and Environmental Science. 7: 700-712.
Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A., and Smalley, R. E. (2001). Gasphase production of carbon single-walled nanotubes from carbon monoxide via the hipco process: A parametric study. Journal of vacuum Science & technology A-Vacuum surfaces and films. 19: 1800-1805.
Burroughes, J. H., Bradley, D. D. C., R. Brown, A., Maorks, R. N., Mackey, K., Friend, R. H., Burn, P. L. and Holmes, A. B. (1990). Electroluminescence on conjugated polymer. Nature. pp. 547- 569.
Byron, P. R., Hubert, P., Salvetat, J. P. and Zalamea, L. (2006). Flexural deflection as a measure of van der Waals interaction forces in the CNT array. Composite Science and Technology. 66: 1125-1131.
Cao, Y., Smith, P. and Heeger, A. J. (1989). Spectroscopic studies of polyaniline in solution and in spin-cast films .Synthetic Metals. 32: 263-281.
Cao, Y. (1990). Spectroscopic studies of acceptor and donor doping of polyaniline in the emeraldine base and pernigraniline forms. Synthetic Metals. 35: 319-332.
Carter, J. C, Grizzi, I., Heeks, S. K., Lacey, D. J., Latham, S. G., May, P. G., Ruiz, O., Pickler, K., Towns, C. R. and Wittman, H. F. (1997). Operating stability of light-emitting polymer diodes, based on poly (pphenylenevinylene). Applied Physics Letter. 71: 34-36.
Chakrabarti, S., Das, B., Banergi, P., Bnerjee, B. and Bhattacharya, R. (1999). Bipolaron saturation in polyperrole. Physical Review B. 60 (11): 7691-7694.
Chaudhuri, D., Kumar, A., Rudra, I. and Sarma, D. D. (2001). Synthesis and SpectroscopicCharacterization of Highly Conducting BF3-Doped Polyaniline. Advanced. Mateials. 13: 1548-1551.
Chen, X. Q. , Saito, T. , Yamada, H. and Matsushige, K. (2001). Aligning singlewall carbon nanotubes with an alternatingcurrent electric field . Applied Physics Letter. 78: 3714-3716.
Chen, G.X., Li, Y. and Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon. 45: 2334-2340.
Chen, Y. and Yu, J. (2005). Growth direction control of aligned carbon nanotubes. Carbon. 43:3181-3194.
Chiang, J. C. and MacDiarmid, A. G. (1986).Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals. 13: 193-205.
Chithralekha, P., Subramanian, and Padiyan, D. P. (2007). Electrodeposition of polyaniline thin films doped with dodeca tungstophosphoric acid: Effect on annealing and vapor sensing. Sensors and Actuators B: Chemical. 122: 274-281.
Choi, E. S., Brooks, J.S., Eaton, D. L., Al-Haik, M. S., Hussaini, M. Y., Garmestani, H., Li, D. and Dahmen, K. (2003). Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Applied Physiology. 94: 6034-6039.
Cholli, A. L., Thiyagarajan, M., Kumar, J. and Parmar, V. S. (2005). Biocatalytic approaches for synthesis of conducting polyaniline nanoparticles . Pure Applied Chemistry. 77 (1): 339-344.
Colanei, N., Nowak, M., Spiegel, D., Hotta, S. and Heeger, A. (1987). Bipolarons in poly (3-methylthiophene): spectroscopic, magnetic and electrochemical measurements. Phyical Review B. 36(15): 7964- 7968.
Cosnier, S. and Holzinger, M. ( 2008). Design of carbon nanotube-polymer frameworks by electropolymerization of SWCNT-pyrrole derivatives.Electrochimica Acta. 53(11): 3948-3954.
Deng, J., Ding, X., Zhang, W., Peng, Y., Wang, J., Long, X., Li, P. and Chan, A. (2002). Carbon nanotube– polyaniline hybrid materials . European Polymer Jouranl. 38: 2497-2501.
Deng, P., Lei, Y., Zheng, X., Li, S., Wu, J., Zhu, F., Ong, B. S. and Zhang, Q. (2016). Polymer based on benzothiadiazole-bridged bisisoindigo for organic field-effect transistor applications. Dyes and Pigments. 125: 407- 413.
Derbal-Habak, H., Bergeret, C., Cousseau, J. and Nunz, J. M. (2011). Improving the current density Jsc of organic solar cells P3HT: PCBM by structuring the photoactive layer with functionalized SWCNTs.Solar Energy Materials & Solar. Cells. 95: 553-556.
DiCesare, N., Belletete, M., Marrano, C., Leclerc, M. and Durocher, G. (1998). Conformational Analysis (ab initio HF/3- 21G*) and Optical Properties of Symmetrically Disubstituted Terthiophenes J. Physical Cheme. A 102: 5142-5149.
Dimaki, M. and Bøggild, P. (2004). Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology. 15: 1095-1102..
Dimitriev, O. P. (2004). Doping of polyaniline by transition metal salts: effect of metal cation on the film morphology. Synthetic Metals. 142: 299-303.
Domingues, D., Logakis, E. and Skordos, A. A. (2012). The use of an electric field in the preparation of glass fibre/epoxy composites containing carbon nanotubes .Carbon. 50: 2493-2503.
Ebbesen, T. W. (1994). Carbon nanotubes. Annual review of materials science. 24: 235–264.
El Malki, Z., Bouzzine, S. M., Bejjit, L., Haddad, M., Hamidi, M. and Bouachrine, M. (2011). Density functional theory [B3LYP/6- 311G(d, p)] study of a new copolymer based on carbazole and (3,4- ethylenedioxythiophene) in their aromatic and polaronic states .J. Applied Polymer Science. 122: 3351-3360.
El Malki, Z., Bouachrine, M., Hamidi, M., SereinSpirau,F., Lere-Porte, J. P. and Sotiropoulos, J. M. (2016). Theoretical study of New Donor-?-Acceptor compounds based on Carbazole, Thiophene and Benzothiadiazole for Photovoltaic application as Dye-sensitized solar cells. Journal Materials and Environnemental Science. 7 (9):3244-3255.
Farag, A. A. M., Ashery, A.and AbdelRafea, M. (2010): Optical dispersion and electronic transition characterizations of spin coated polyaniline thin films. Synthetic Metals.160: 156-161.
Ferguson, A. J., Blackburn, J. L. and Kopidaki, N. (2013). Fullerene and carbon nanotubes as acceptor materials in organic photovoltaic. Materials Letter. 90: 115-125.
Franck, S., Poncharal, P., Wang, Z. L., and de Heer, W. A. (1998). Carbon nanotube quantum resistors. Science. 280: 1744- 1746.
Freitag, M., Perebeinos, V., Chen, J., Stein, A., Tsang, J. C., Misewich, J. A., Martel, R. and Avouris, P. (2004). Hot carrier electroluminescence from a single carbon nanotube. Nano Letters. 4: 1063–1066.
Frisch, M. J., Trucks, G.W., Schlegel, H. B., Scuseria, G. E., Robb, M. A. and Cheeseman, J. R. (2009). Gaussian 09, revision B.01. Wallingford CT: Gaussian, Inc. Futaba, D. N., Mizuno, K., Namai, T., Yumura, M. and Iijima. S. (2004). Water-assisted highly efficient synthesis of impurity-free singlewalled carbon nanotubes. Science. 306: 1362– 1364.
Gadisa, A., Svensson, M., Andersson, M. R. and Inganas, O. (2004). Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenesÕ fullerene derivative. Applied Physics Letter. 84: 1609-1611.
Gao, G. Yu, J., Hummelen, J. C., Wudl, F. and Heeger, A. J. (1995). Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions Science. 270: 1789-1791.
Genoud, F., Kulszewicz-Bajer, I., Bedel, A., Oddou, J. L., Jeandey, C. and Pron, A. (2000). Lewis Acid Doped Polyaniline. Part II: Spectroscopic Studies of Emeraldine Base and Emeraldine Hydrochloride Complexation with FeCl3. Chemical Materials. 12: 744.
Gohier, A., Minéa, T. M., Djouadi, M. A. and Granier, A. (2007). Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition. Journal of Applied Physics.101: 054317- 54322.
Gojny, F.H. , Nastalczyk, J., Roslaniec, Z. and Schulte, K. (2003). Surface modified multiwalled carbon nanotubes in CNT/epoxycomposites, Chemical Physics Letters. 370: 820-824.
Gorelsky, S. I. (2009). Swizard Program, University of Ottawa, Canada.
Goswami, M., Ghosh, R., Maruyama, T. and Meikap, A. K. (2016). Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties. Applied Surface Science. 364: 176-180.
Guo, T., Nikolaev, P., Thess, A., Colbert, D. T. and Smalley, R. E. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Chemical physics letters. 243: 49-54.
Han, Y. K., Chang, M. Y., Ho, K. S., Hsieh, T. H., Tsai, J. L. and Huang, P. C. (2014). Electrochemically deposited nano polyaniline films as hole transporting layers in organic solar cells. Solar Energy Materials and Solar Cells. 128: 198- 203.
Harigay, K. (1992). Metal-insulator transition in doped conducting polymers. Disappearance of the electronic gap with persisting bond alternation in the system with site-type impurities. Chemical Physics. 167: 315-326.
He B., Tang, Q., Luo, J., Li, Q., Chen X. and Cai, H. J. (2014). Rapid charge-transfer in polypyrrole–single wall carbon nanotube complex counter electrodes: Improved photovoltaic performances of dyesensitized solar cells.Power Sources. 256: 170-177.
Heeger, A. J. (2001). Nobel Prize 2000 lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials. Current Applied Physics. 1: 247- 267.
Hone, J. (1999). Thermal conductivity of singlewall carbon nanotubes. Synthetic metals. 103: 2498-2499.
Hone, J., Llaguno, M.C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A. (2000). Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Aplied Physics. Lettter. 77: 666-668.
Hongwei, W. Zhu, J., Wang, K. and Wu, D. S. (2009).Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells. Cells. 93:1461- 1470.
Holzinger, M., Steinmetz, J., Samaille, D., Glerup, M., Paillet, M., Bernier, P., Ley, L. and Graupner, R. (2004). Cycloaddition for cross-linking SWCNTs. Carbon. 42: 941- 947.
Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M. E. and Bekyarova, E. (2005). Influence of the Zeta Potential on the Dispersability and Purification of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B. 109: 11520-11524.
Huang, W. S. and MacDiarmid, A. G. (1993). Optical properties of polyaniline.Polymer. 34: 1833-1845.
Huang, Y. Y. and Terentjev, E. M. (2012). Dispersion of Carbon Nanotubes: Mixing, Sonication Stabilization, and Composite Properties, Polymers. Polymer. 4: 275-295.
Hundley, M. F., Adams, P. N., Mattes, B. R. (2002). The influence of 2-acrylamido-2- methyl-1-propanesulfonic acid (AMPSA) additive concentration and stretch orientation on electronic transport in AMPSA-modified polyaniline films prepared from an acid solvent mixture. Synthetic Meals. 129: 291-297.
IIjima, S. (1991). Helical microtubules of graphitic carbon. Nature. 354: 56-58. Iijima, S. and Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter . Nature. 363: 603-605.
Janssen, R. A. J., Hummelen, J. C., Sariciftci, N. S. (2005). Polymer–Fullerene Bulk Heterojunction Solar Cells. MRS Bulletin. 30: 33-36.
Jeong, D. C., Song, S. G., Satheesh, Kumar, C., Lee, Y., Kim, K. S. and Song, C. (2015). Enhanced photo-induced electron transfer by multi-walled carbon nanotubes in selfassembled terpyridine polymer networks. Polymer. 69: 39 - 44.
Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Lamy C. M., Lefrant, S., Deniard, P., Lee, R. and Fischer, J. E. (1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 388: 756-358.
Jun, G. H., Jin, S. H., Park, S. H., Jeon, S. and Hong, S. H. (2012). Highly dispersed carbon nanotubes in organic media for polymer: fullerene photovoltaic devices.Carbon. 50: 40-46.
Kazmersky, L. L. (1980). Polycrystalline and Amorphous Thin Films and Devices, Academic Press, New York. pp.135.
Kerr, C. J., Huang, Y. Y., Marshall, J. E. and Terentjev, E. M. (2011). Effect of filament aspect ratio on the dielectric response of multi-walled carbon nanotube composites. Journal Applied Physics. 109: 094109- 094109-6.
Khoshkholgh, M. J., Marsusi, F. and Abolhassani, M. R. (2015). Abolhassani, Density functional theory investigation of opto-electronic properties of thieno [3,4-b] thiophene and benzodithiophenepolymer and derivatives and their applications in solar cell. Spectrochimica Acta Part A. 136: 373-380.
Kitiyanan, B., Alvarez, W. E., Harwell, J. H. and Resasco, D. E. (2000). Controlled production of single wall carbon nanotubes by catalytic decomposition of co on bimetallic como catalysts. Chemical Physics Letter. 317: 497-503.
Kim, K. and Jin, J. I. (2001). Preparation of ppv nanotubes and nanorods and carbonized products derived therefrom. Nano letters. 1(11): 631-636.
Kong, J., Yenilmez, E., Tombler, T. W., Kim, W. and Dai, H. (2001). Quantum interference and ballistic transmission in nanotube electron waveguides. Physical review letters. 87: 106801-106807.
Kong, J. and Dai, H. (2001). Full and Modulated Chemical Gating of Individual Carbon Nanotubes by Organic Amine Compounds. The journal of physical chemistry B. 105: 2890-2893.
Kovac, J., Peternai, L. and Lengyel, O. (2003). Advanced light emitting diodes structures for optoelectronic applications. Thin Solids Films. 433: 22-26.
Krupke, R., Hennrich, F., Lohneysen, H. V. and Kappes, M.M. (2003). Separation of Metallic from Semiconducting SingleWalled Carbon Nanotubes. Science. 301: 344-347.
Kulszewicz-Bajer, I., Pron, A., Abramowicz, J., Jeandey, C., Oddou, J. L. and Sobczak, J. W. (1999). Lewis Acid Doped Polyaniline: Preparation and Spectroscopic Characterization. Chemical Materials. 11(3): 552-556.
Kumar, A. (2011). Swift heavy ion irradiation induced modifications in the optical band gap and Urbach’s tail in polyaniline nanofibers. Nuclear Instruments and Methods in Physics Research Section B. 269: 2798-2806.
Lee, C., Yang, W. and Parr, R. G. (1988). Development of colle-salvetti correlation energy formula, into a functional of the electron density. Physical Review B. 37: 785-789.
Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A. and Smalley, R. E. (1997). Conductivity enhancement in single-walled carbon nanotube bundles doped with k and br. Nature. 388: 255-257.
Lee, C. H., Lee, C. E. and jin, J. I. (1998). Bipolaron formation on I2-doped PBMPV conducting polymers. J. of the Korean Society. 33: 532-534.
Liu, J.Q., Xiao, T., Liao, K. and Wu, P. (2012). Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionnalizations. Nanotechnology. 18: 165701.
Lizin, S., Passel, S. V., Schepper, E. D. and Vranken, L. (2012). The future of organic photovoltaic solar cells as a direct power source for consumer electronics. Solar Energy Materials Solar Cells. 103:1-10. Lu, S. and Panchapakesan, B. (2006). Photoconductivity in single wall carbon nanotube sheets. Nanotechnology. 17: 1843-1850.
Lu, X., Hu, Y., Wang, L., Guo, Q., Chen, S., Chen, Sh., Hou, H. and Song, Y. (2016). Macroporous Carbon/Nitrogen-doped Carbon Nanotubes/ Polyaniline Nanocomposites and Their Application in Supercapacitors. Electrochimica Acta. 189: 158-165.
Mabrouk, A., Azazi, A. and Alimi, K. (2013). Molecular structure–property engineering of low-band-gap copolymers, based on fluorene, for efficient bulk heterojunction solar cells: A density functional theory study. Polymer Engineering Science. 53:1040-1052.
MacDiarmid, A. G. (1997). Polyaniline and polypyrrole: Where are we headed. Synthetic Metals. 84: 27-34.
Malinauskas, A. (2001). Chemical deposition of conducting polymers. Polymer. 42: 3957- 3972.
Martin, R, Céspedes-Guirao, F. J., Miguel, M. D., Lazaro, F. F., García, H. and Sastre, S. (2012). A. Single and multi-walled carbon nanotubes covalently linked to Synthesis, characterization and photophysical properties. Chemical Science. 3: 470-475.
May, V. and Kuhn, O. (2011). Charge and Energy Transfer Dynamics in Molecular Systems, 3rd Revised and Enlarged, Edition Wiley, VCH, Berlin. ISBN: 978-3-527-40732-3.
Mbarek, M., Zaidi, B., Wéry, J. and Alimi, K. (2012). Structure–properties correlation of copolymers derived from poly (phenylene vinylene) (PPV). Synthetic Metals. 162: 1762-1768.
Meyyappan, M., Delzeit, L., Cassell, A. and Hash, D. (2003). Carbon nanotube growth by PECVD: a review. Plasma Sources Science and Technology. 12: 205.
Mickelson, E. T., Huffman, C. B., Rinzler, A. G., Smalley, R. E., Hauge, R. H. and Margrave, J. L. (1998). Fluorination of Single-Wall Carbon Nanotubes. Chemical Physics Letter. 296: 188-194.
Mishra, A. K. and Tandon, P. (2009). Ab Initio and DFT Study of Polyaniline Leucoemeraldine Base and Its Oligomers Journal Physical Chemistry B. 113: 14629- 14639.
Moaseri, E., Karimi M., Baniadam, M. and Maghreb, M. (2014). Improvements in mechanical properties of multiwalled carbon nanotube-reinforced epoxy composites through novel magneticassisted method for alignment of carbon nanotubes. Composites Part A Applied Science and Manufacturing: 64: 228-233.
Molapo, K. M., Ndangili, P. M., Ajayi, R. F., Mbambisa, G., Mailu, S. M., Njomo, N., Masikini, M., Baker, P. and Iwuoha, E. I. (2012).Electronics of Conjugated Polymers (I): Polyaniline. International Journal Electrochemical Science. 11859-11875.
Monti, M., Natali, M., Torre, L. and Kenny, J. M. (2012). The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon. 50: 2453-2464.
Moradi, O., Yari, M., Zare, K., Mizra, B. and Najafi, F. (2012). A review of chemistry principles and reactions. Fullerenes Nanotubes and Carbon Nanostructures. 20: 138-151.
Morishita, T., Matsushita, M., Katagiri, Y. and Fukumori, K. (2010). Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to highmelting polymer-based composites. Carbon. 48: 2308-2316.
Mulligan, C. J., Bilen, C., Zhou, X. , Belcher, W. J.and Dastoor, P. C. (2015). Levelised cost of electricity for organic photovoltaics. Solar Energy Materials and Solar Cells.133: 26-31.
O’Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S. and Haroz, E. H. (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science. 297: 593-596.
Pal, G., Kumar, S. (2016). Modeling of carbon nanotubes and carbon nanotube–polymer composites. Progress in Aerospace Sciences. 80: 33-58.
Park, C., Wilkinson, J., Banda, S., Ounaies, Z., Wise, K. and Sauti, G. (2006). Aligned single-wall carbon Nanotubes polymer composite using an electric field. Journal of Polymer Science part B. 44: 1751-1762.
Park, S.D., Han, D.H., Teng, D. and Kwon, Y. (2008). Rheological properties and dispersion of multi-walled Carbon nanotube (MWCNT) in polystyrene matrix. Current Applied Physics. 8: 482-485.
Peng, H., Reverdy, P., Khabashesku, V. N. and Margrave, J. L. (2003). Side wall functionalization of single- walled carbon nanotubes with organic peroxides. Chemical Communication. 3: 362-365.
Peumans, P. and Forrest, S. R. (2001). Veryhigh-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Applied Phyics Letter. 79(1): 126-128.
Pickholz, M., dosSantos, M.C. (1999). Interchain and correlation effects in oligothiophenes. Synthetic Metals. 101: 528-529.
Pietro, W.J., Francl, M. M., Hehre, W. J., Defrees, D. J., Pople, J. A. and Binkley, J. S. (1982). Binkley, Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second row elements. Journal of American Chemical Society. 104: 5039-5048.
Pinto, N.J., Johnson, A.T. J., MacDiarmid, A.G., Mueller, C. H., Theofylaktos, N., Robinson, D.C., Miranda, F.A. (2003). Electrospun polyaniline/polythethylene oxide nanofiber field-effect transistor. Applied Physics Letter. 83: 4244-4246.
Pokrop, R., Bajer, I.K., Wielgus, I., Zagorska, M., Albertini, D., Lefrant, S., Louarn, G. and Pron, A. (2009). Electrochemical and Raman spectroelectrochemical investigation of single-wall carbon nanotubes–polythiophene hybrid materials. Synthetic Metals. 159: 919-924.
Qin, S., Qin, D., Ford, W. T., Resasco, D. E. and Herrera, J. E. (2004). Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from method. Macromolecules. 37: 752- 757.
Rajarajeswari, M., Iyakutti, K. and Kawazoe, Y. (2012). Noncovalent and radicals covalent functionalization of a (5, 0) single-walled carbon nanotube with alanine and alanine. Journal of Molecular Modeling. 18: 771- 781.
Rajiv, K., Jitendra, K., Amit, K., Vikram, K., Rama, K. and Ramadhar, S. (2010). Poly(3- hexylthiophene):Functionalized singlewalled carbon nanotubes: (6,6)-phenylC61-butyric acidmethyl ester composites for photovoltaic cell at ambient condition. Solar. Energy Materials. & Solar Cells. 94: 2386-2394.
Rarvikar, N. R., Schadler, L. ., Vijaaraghavan, A., Zhao, Y., Wei, B. and Ajayan, P. M. (2005). Synthesis and characterization of thickness-aligned carbon nanotubepolymer composite films. Chemical Materials. 17: 974-983.
Razykov, T. M., Ferekides, C. S., Morel, D., Stefanakos, E., Ullal, H. S. and Upadhyaya, H. M. (2011). Solar photovoltaic electricity: Current status and future prospects. Solar Energy. 85: 1580-1608.
Saito, R, Fujita, M., Dresselhaus, G. and Dresselhaus, M. S. (1992). Electronic structure of chiral graphene tubules. Applied physics letters. 60: 2204-2206.
Sahoo, N. G., Chae, Y. Jung, So. H. H., Chob, J. W. (2007). Polypyrrole Coated Carbon Nanotubes: Synthesis, Characterization, and Enhanced Electrical Properties. Synthetic Metals. 157: 374-379.
Salaneck, W. R., Friend, R. H. and Brédas, J. L. (1999). Electronic structure of conjugated polymers, consequence of electron-lattice coupling. Physics Reports. 319: 231-251.
Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forró. L., Benoit, W. and Zuppiroli, L. (1999). Mechanical properties of carbon nanotubes. Apllied physics A: Materials science and processing. 69: 255- 260.
Sandler, J., Shaffer, M. S. P, Prasse, T., Bauhfer, W., Schulte, K. and Windle, H. (1999). Development of a dispersion Process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer. 40: 5967-5971.
Savenije, T. J., Kroeze, J. E., Yang, X. and Loos, J. (2006). The formation of crystalline P3HT fibrils upon annealing of a PCBM:P3HT bulk hetero-junction. Thin Solid Films. 511512: 2-6. Saxena, V. and Malhotra, B. D. (2003).Prospects of conducting polymers in molecular electronics. CurrentApplied Physics. 3: 293- 305.
Scharber, and Sariciftci. (2013). Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science. 38: 1929- 1940.
Schôn, H. and Kloc, C. (2001). Organic Metalsemiconductor field effect phototransistor. Applied Physics Letter. 78: 3538-3540.
Schroder, E. and Hyldgaard,P. (2003). Van der Waals interactions of parallel and concentric nanotubes. Materials Science and Engineering C. 23:721-725.
Scully, M., Petty, M. C. and Monkman, A. P. (1993). Optical properties of polyaniline thin films. Synthetic Metals. 55: 183-187.
Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherzet, T. and Hummelen, J. C. (2001). 2.5% efficient organic plastic solar cells . Applied Physics. Letter. 78: 841-843.
Shanmugharaj, A. M., Bae, J. H., Nayak, R. R. and Ryu, S. H. (2007). Preparation of poly(styrene-co- acrylonitrile) - grafted multiwalled carbon nanotubes via surfaceinitiated atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry. 45: 460-470.
Shim, M. and Siddons, G. P. (2003). Photoinduced conductivity changes in carbon nanotube transistors. Applied physics letters. 83: 3564-3566.
Stewart, D. A. and Léonard, F. (2005). Energy conversion efficiency in nanotube optoelectronics. Nano letters. 5: 219-222.
Strano, M. S., Dyke, C. A., Usrey, M. L., Barone, P. W., Allen, M. J., Shan, H., Kittrell, C., Hauge, R. H., Tour, J. M. and Smalley, R. E. (2003). Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization. Science. 301: 1519-1522.
Tang, C. W. (1986). Two-layer organic photovoltaic cell . Applied Phyics. Letter. 48: 183-185.
Tehrani, Z., Korochkina, T., Govindarajan, S., Thomas, D. J., Mahony, J. O., Kettle, J., Claypole, T. C. and Gethin, D. T. (2015). Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications. Organic Electronics. 26: 386-394.
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tománek, D., Fischer, J. E. and Smalley, R. E. (1996). Crystalline ropes of metallic carbon nanotubes. Science. 273: 483-487.
Tauc, J. (1974). Amorphous and Liquid Semiconductors, New York. Plenum. Urbach, F. (1953). The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physical review B. 92: 1324-1324.
Veldman, A., Meskers, S. C. J. and Janssen, R. A. J. (2009). The energy of charge-transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells. Advanced Functional Materials. 19: 1939-1948.
Vijayakumar, C., Balan, B., Kim, M. J. and Takeuchi, M. (2011). Noncovalent Functionalization of SWNTs with Azobenzene-Containing Polymers: Solubility, Stability, and Enhancement of Photoresponsive Properties. ACS Journal of Physical Chemistry C. 115: 4533-4539.
Vignolo, P., Farchioni, R. and Grosso, G. (2001). Tight Binding Effective Hamiltonians for the Electronic States of Polyaniline Chains. Physica Status Soldi. 223: 853.
Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Chang, Y. R. and AjayanPulickel, M. (2003). Single-step in situ synthesis of polymer-grafted singlewall nanotube composites . Journal of Americain Chemical Society. 125: 9258- 9259.
Wu, W., Li, F., Nie, C., Wu, J., Chen, W., Wu, C. and Guo, T. ( 2015).Improved performance of flexible white hybrid light emitting diodes by adjusting quantum dots distribution in polymer matrix. Vacuum. 111: 1- 4.
Wang, Y., Gao, L., Sun, J., Liu, Y., Zheng, S. and Kajiura, H. (2006). An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes. Chemical Physics Letters. 432: 205-208.
Wang, Y., Zhang, S.and Deng, Y. (2016). Semiconductor to metallic behavior transition in multi-wall carbon nanotubes/ polyaniline composites with improved thermoelectric properties. Materials Letters. 164: 132-135.
Xue, M. A., Uchida, S., Rand, B. P. and Forrest, S. R. (2004). 4.2% efficient organic photovoltaic cells with low series resistances. Applied Physics Letter. 84: 3013-3015.
Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J. and Janssen, R. A. J. (2005). Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Letters. 5: 579-583.
Yang, Z. P., Ci, L., Bur, J. A. N., Lin, S. Y., and Ajayan, P. M. (2008). Experimental observation of an extremely dark material made by a low-density nanotube array. Nano letters. 8: 446-451.
Yu, M. F., Files, B. S., Arepalli, S. and Ruoff, R. S. (2000). Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review letters. 84: 5552-5555.
Yun, D., Feng, W., Wu, H., Li, B. , Liu, X., Yi, W., Qiang, J., Gao, S. and Yan. (2008). Controllable functionalization of singlewall carbon nanotubes by in situ polymerization method for organic photovoltaic device.Synthetic Metals. 158: 977-983.
Zaidi, B., Bouzayen, N., Wéry, J., Alimi, K. (2010). Grafting of oligo-N-vinyl carbazole on single walled carbon nanotubes, Journal of Molecular Structure. Journal of Molecular Structure. 971: 71-80.
Zaidi, B., Ayachi, S., Mabrouk, A., Molinie, P. and Alimi, K. (2003). Changes of the properties of poly-phenylene-vinylene-ether and C1_4 poly-phenylene-vinylene-ether with iodine pressure and annealing. Polymer Degradation and Stability. 79: 183-192.
Zaidi, B., Bouzayen, N., Wéry, J. and Alimi, K. (2011). Annealing treatment and carbon nanotubes concentration effects on the optical and vibrational properties of single walled carbon nanotubes functionalized with short oligo-N-vinyl carbazole.Materials Chemistry and Physics. 126: 417-423. Zaidi, B., Bouzayen, N., Znaidia, S. and Mbarek, M. ( 2013). Changes of the properties of poly-phenylene-vinylene-ether and C1-4 poly-phenylene-vinylene-ether with iodine pressure and annealing. Journal of Molecular Structure. 1039: 46-50.
Zhang, L. and Wan, M. (2003). Self-Assembly of Polyaniline—From Nanotubes to Hollow Microspheres.Advanced Functional Materials. 13: 815-820.
Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q. and Liu, Z. (2003). Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B. 107: 3712-3718.
Zhang. Y. and Iijima. S. (1999). Elastic reponse of carbon nanotube bundles to visible light. Physical Review Letter. 82: 3472-3475.
Zheng, M., Jagota, A., Strano, M. S., Santos, A. P., Barone, P., Chou, S. G., Diner, B. A., Dresselhaus, M. S., Mclean, R. S., Onoa, G. B., Samsonidze, G. G., Semke, E. D., Usrey, M. and Walls, D. J. (2003). Structure-Based Carbon Nanotube Sorting by SequenceDependent DNAAssembly. Science. 302: 1545-1548.
Zhokhavets, U., Erb, T., Hoppe, H., Gobsch, G. and Sariciftci, N. S. (2006). Effect of annealing of poly(3- hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films. 496: 679-682.
Zhou, Y., Freitag, M., Hone, J., Staii, C., Johnson, A.T. J., Pinto, N. J. and MacDiarmid, A. G. (2003). Fabrication and electrical Characterization of polyaniline based nanofibers with diameyter below 30 nm. Applied Physics Letter. 83: 3800-3802.
Zhou, X., Ren, A. M. and Feng, J. K. (2004). Theoretical investigation on the groundand excited-state properties of novel octupolar oligothiophene-functionalized truxenes and dipolar analogs. Polymer. 45: 7747-7757.
Zhu, H., Wei, J., Wang, K. and Wu, D. (2009). Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells. 93: 1461-1470.
Zou, L. Y., Ren, A. M., Feng, J. K., Ran, X. Q., Liu, Y. L. and Sun, C. C. (2009). Structural, electronic, and optical properties of phenol-pyridyl boron complexes for light emitting diodes. International Journal of Quantum Chemistry. 109: 1419-1429.