Management of root-knot nematodes, Meloidogyne incognita in Okra using wheat flour as bionematocides

Authors

DOI:

https://doi.org/10.52756/ijerr.2022.v28.002

Keywords:

Biodegradable, effective crop rotation, nematicide, root-knot Nematodes (Meloidogyne sp.), Phytophagous, Wheat flour

Abstract

The current study aims to determine how well root-knot nematodes (Meloidogyne sp.) are reduced when wheat flour is used as bio-nematicides to increase agricultural productivity. Root-knot nematodes inflict a significant amount of annual loss by parasitizing plant species, many of which are vegetable crops. They harm plants to the extent that they contribute between 10% to 40% of India's annual agricultural losses. A multi-cropping system and the advent of high-yielding crop types have increased the demand for efficient crop protection. Different strategies, including biological, physical, and cultural usage of resistant varieties, and pesticides, have been developed to control the phytophagous nematodes to deal with the situation. Organic raw materials used on the okra plants and the root-knot nematode are evaluated together with prospective bionematocides that aim to manage nematodes over the long run for a sustainable ecological system and profitable crop values. Using a greater dose of the liquid bioagent formulation significantly reduces the nematode population and increases the plant growth parameter.  Plant materials provide effective nematicides that are easily biodegradable. The present study intends to further establish the effectiveness of bio-nematicides, such as wheat flour, in treating root-knot disease.

References

Bird, A.F. (1974). The ultra-structure and histochemistry of nematode induced giant cell. Journal of Biophysical and Biochemical Cytology. 11: 701-715.

Da-Silva, M.C.M., De-Sa, M.F.G., Chrispeels, M. J., Togawa, R.C., & Neshich, G. (2000). Analysis of structural and physico-chemical parameters involved in the specificity of binding between -amylases and their inhibitors. Protein Engineering. 13: 167-177.

Dutta, J., & Thakur, D. (2017). Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling. India. PloS one. 12(8).

Farmer, E.E., & Ryan, C.A. (1990). Interplant communication: air borne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences (USA). 87: 7713-7716.

Gatehouse, A.M.R., Fenton, K.A., Jepson, I., & Pavey, D.J. 1986. The effects of -amylase inhibitors on insect storage pests: inhibition of -amylase in vitro and effects on development in vivo. Journal of Science and Food Agriculture. 37: 727-734.

Gheysen, G., van der Eycken, W., Barthels, N., Karimi, M., & Van Montagu, M. (1996). The exploitation of nematode-responsive genes in novel nematode control methods. Pesticide Science. 47: 95-101.

Hussey, R.S. (1989). Disease-inducing secretions of plant-parasitic nematodes. Annual Review of Phytopathology. 27: 123-141.

Hussey, R.S., Davis, E.L., & Ray, C. (1994). Meloidogyne stylet secretions. In: Advances in Molecular Plant Nematology (eds. F. Lamberti, C. de. Giorgi and D.M. Bird), Plenum Press , New York. Pp. 233-249.

Ishimoto, M., & Kitamura, K. (1989). Growth inhibitory effects of an -amylase inhibitor from kidney bean, Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Applied Entomology and Zoology. 24: 281-286.

Kayani, M.Z., Mukhtar, T., & Hussain M.A. (2017). Effects of southern root-knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop. Prot. 92: 207–212. doi: 10.1016/j.cropro.2016.09.007.

Koritsas,V.M., & Atkinson, H.J. (1994). Proteinases of females of the phytoparasite Globodera pallida (potato cyst nematode). Parasitology. 109: 357-365.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin Phenol Reagent. Journal of Biological Chemistry. 193(1): 256-275. Doi: 10.1016/S0021-9258(19)52451-6

Marshall, J.J., & Lauda, C.M. (1975). Purification and properties of phascolamin, an inhibitor of -amylase, from kidney bean Phaseolus vulgaris. Journal of Biological Chemistry. 250: 8030-8037.

Moreno, J., & Chrispeels, M. J. (1989). A lectin gene encodes the -amylase inhibitor of the common bean. Proceedings of the National Academy of Sciences (USA). 86: 7885 -7889.

Mulimani, V.H., Rudrappa, G., & Supriya, D. (1994). Alpha-amylase inhibitors in chick pea (Cicer arietinum L.). Journal of the Science of Food and Agriculture. 64: 413-415.

Nickle, W.R. (1991). Manual of Agricultural Nematology. New York: Marcel Dekker, Inc.

Pace, W., Parlamenti, R., Rab, V. B., Silano, V., & Vittozi, L. (1978). Protein a-amylase inhibitors from wheat flour. Cereal Chemistry. 55(2): 244-254.

Patil, J.A., Yadav, S., & Kumar, A. (2021). Management of root-knot nematode, Meloidogyne incognita and soil-borne fungus, Fusarium oxysporum in cucumber using three bioagents under polyhouse conditions. Saudi J. Biol. Sci., 28(12): 7006–7011. doi: 10.1016/j.sjbs.2021.07.081

Powers, J.R., & Whitaker, J.R. (1977a). Purification and some physical and chemical properties of red kidney bean (Phaseolus vulgaris) -amylase inhibitor. Journal of Food Biochemistry. 1: 217-238.

Powers, J.R., & Whitaker, J.R. (1977b). Effect of several experimental parameters on combination of red kidney bean (Phaseolus vulgaris) -amylase inhibitor with porcine pancreatic -amylase. Journal of Food Biochemistry 1: 239-260.

Rekha, M.R., Padmaja, G., Easwari Amma, C.S., & Sheela, M.N. (1999). Genotype differences in the a-amylase inhibitor activity in sweet potato and yam tubers. Journal of Root Crops. 25(2): 95-101.

Sasser, J.N., & Freckman, D.W. (1987). A world perspective on nematology: The role of the society. In Vistas on Nematology, J.A. Veech and D.W. Dickerson, eds (Hyattsville, MD: Society of Nematologists). Pp. 7-14.

Sasser, J.N., Hartmen, K.M., & Freckman, D.W. (1987). Summary of Preliminary Crop Germplasm Evaluation for Resistance to Root-Knot Nematodes. Raleigh, NC: North Carolina State University and US Agency for International Development. Pp.1–88.

Sijmons, P.C., Atkinson, H.J., & Wyss, U. (1994). Parasitic strategies of root nematodes and associated host cell responses. Annual Review of Phytopathology. 32: 235-259.

Singh, S. (2019). Integrated approach for management of root-knot nematode (Meloidogyne incognita) in bitter gourd (Momordica charantia) Ind. J. Agri. Sci. 89: 71–76.

Singh, S., Balodi, R., Meena, P.N., & Singhal, S. (2021). Biocontrol activity of Trichoderma harzianum, Bacillus subtilis and Pseudomonas fluorescens against Meloidogyne incognita, Fusarium oxysporum and Rhizoctonia solani. Indian Phytopathology. Pp. 1-12. doi:10.1007/s42360-021-00368-6

Suzuki, K., Ishimoto, M., Kikuchi, F., & Kitamura, K. (1993). Growth inhibitory effect of an -amylase inhibitor from the wild common bean resistant to the Mexican beanweevil (Zabrotes subfasciatus). Japanese Journal of Breeding. 43: 257-265.

Veech, J. A., & Endo, B.Y. 1970.Comparative morphology and enzyme histochemistry in root-knot resistant and susceptible soybeans. Phytopathology. 60: 896-902.

Published

2022-08-30

How to Cite

Kundu, K. (2022). Management of root-knot nematodes, Meloidogyne incognita in Okra using wheat flour as bionematocides. International Journal of Experimental Research and Review, 28, 8–14. https://doi.org/10.52756/ijerr.2022.v28.002

Issue

Section

Articles