Study on segmentation and prediction of lung cancer based on machine learning approaches
DOI:
https://doi.org/10.52756/ijerr.2023.v30.001Keywords:
Deep leaning, Machine learning, clustering, fuzzy, segmentationAbstract
Lung cancer is a dangerous disease in human health. At the early stage, lung cancer detection provides a way to save human life. As a result, improvements in Deep Learning (DL), a technique, a branch of Machine Learning (ML), have helped to identify and classify lung cancer in clinical photographs. DL technology has also outperformed traditional methods in a variety of fields. Researchers are exploring various DL techniques for disease detection to improve the accuracy of the CAD systems in CT lung cancer detection. In this experiment, cutting-edge ML and DL methods for lung disease have been recommended as CAD systems after thoroughly analysing existing frameworks. It can be separated into FP reduction systems and system to detect nodule. The primary characteristics of various approaches are analyzed. The CT lung datasets existing for examination and evaluation with the various approaches are also presented and discussed.
References
Alzubi, J. A., Bharathikannan, B., Tanwar, S., Manikandan, R., Khanna, A., & Thaventhiran, C. (2019). Boosted neural network ensemble classification for lung cancer disease diagnosis. Applied Soft Computing, 80, 579-591. https://orcid.org/10.1016/j.asoc.2019.04.031.
Asuntha, A., & Srinivasan, A. (2020). Deep learning for lung Cancer detection and classification. Multimedia Tools and Applications, 79, 7731-7762. https://orcid.org/10.1007/s11042-019-08394-3.
Asuntha, A., Singh, N., & Srinivasan, A. (2016). PSO, genetic optimization and SVM algorithm used for lung cancer detection. Journal of Chemical and Pharmaceutical Research, 8(6), 351-359.
Bębas, E., Borowska, M., Derlatka, M., Oczeretko, E., Hładuński, M., Szumowski, P., & Mojsak, M. (2021). Machine-learning-based classification of the histological subtype of non-small-cell lung cancer using MRI texture analysis. Biomedical Signal Processing and Control, 66, 102446. https://orcid.org/10.1016/j.bspc.2021.102446.
Camarlinghi, N., Gori, I., Retico, A., Bellotti, R., Bosco, P., Cerello, P., Gargano, G., Lopez, T. E., Megna, R., Peccarisi, M., & Fantacci, M. E. (2012). Combination of computer-aided detection algorithms for automatic lung nodule identification. International Journal of Computer Assisted Radiology and Surgery, 7, 455-464. https://orcid.org/10.1007/s11548-011-0637-6.
Capizzi, G., Sciuto, G. L., Napoli, C., Połap, D., & Woźniak, M. (2019). Small lung nodules detection based on fuzzy-logic and probabilistic neural network with bioinspired reinforcement learning. IEEE Transactions on Fuzzy Systems, 28(6), 1178-1189. https://orcid.org/10.1109/TFUZZ.2019.2952831.
Chen, Y., Wang, Y., Hu, F., Feng, L., Zhou, T., & Zheng, C. (2021). LDNNET: towards robust classification of lung nodule and cancer using lung dense neural network. IEEE Access, 9, 50301-50320. https://orcid.org/10.1109/ACCESS.2021.3068896.
Choi, W. J., & Choi, T. S. (2014). Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor. Computer methods and programs in Biomedicine, 113(1), 37-54. https://orcid.org/10.1016/j.cmpb.2013.08.015.
Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A.L., Razavian, N., & Tsirigos, A. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature medicine, 24(10), 1559-1567. https://orcid.org/10.1038/s41591-018-0177-5.
Hsu, C. H., Chen, X., Lin, W., Jiang, C., Zhang, Y., Hao, Z., & Chung, Y. C. (2021). Effective multiple cancer disease diagnosis frameworks for improved healthcare using machine learning. Measurement, 175, 109145. https://orcid.org/10.1016/j.measurement.2021.109145.
Jiang, J., Hu, Y. C., Tyagi, N., Zhang, P., Rimner, A., Mageras, G. S., Deasy, J.O., & Veeraraghavan, H. (2018). Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II 11, Springer International Publishing, pp. 777-785. https://orcid.org/10.1007/978-3-030-00934-2_86.
Junior, J. R. F., Koenigkam-Santos, M., Cipriano, F. E. G., Fabro, A. T., & de Azevedo-Marques, P. M. (2018). Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Computer Methods and Programs in Biomedicine, 159, 23-30. https://orcid.org/10.1016/j.cmpb.2018.02.015.
Kamal, U., Rafi, A. M., Hoque, R., Wu, J., & Hasan, M. K. (2020). Lung cancer tumor region segmentation using recurrent 3d-denseunet. In Thoracic Image Analysis: Second International Workshop, TIA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings 2, Springer International Publishing, pp. 36-47. https://orcid.org/10.1007/978-3-030-62469-9_4.
Lakshmanaprabu, S. K., Mohanty, S. N., Shankar, K., Arunkumar, N., & Ramirez, G. (2019). Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems, 92, 374-382.
https://orcid.org/10.1016/j.future.2018.10.009.
Lin, C. J., Jeng, S. Y., & Chen, M. K. (2020). Using 2D CNN with Taguchi parametric optimization for lung cancer recognition from CT images. Applied Sciences, 10(7), 2591. 10.3390/app10072591
Lin, X., Sun, H., Gao, X., Xu, Y., Wang, Z., & Wang, Y. (2021). Discrimination of lung tumor and boundary tissues based on laser-induced breakdown spectroscopy and machine learning. Spectrochimica Acta Part B: Atomic Spectroscopy, 180, 106200. https://orcid.org/10.1016/j.sab.2021.106200.
Lu, J., Chen, L., Yin, J., Huang, T., Bi, Y., Kong, X., Zheng, M., & Cai, Y. D. (2016). Identification of new candidate drugs for lung cancer using chemical–chemical interactions, chemical–protein interactions and a K-means clustering algorithm. Journal of Biomolecular Structure and Dynamics, 34(4), 906-917. https://orcid.org/10.1080/07391102.2015.1060161
Maleki, N., Zeinali, Y., & Niaki, S. T. A. (2021). A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Systems with Applications, 164, 113981. https://orcid.org/10.1016/j.eswa.2020.113981.
Manickavasagam, R., & Selvan, S. (2019). Automatic detection and classification of lung nodules in CT image using optimized neuro fuzzy classifier with cuckoo search algorithm. Journal of Medical Systems, 43(3), 77. https://orcid.org/10.1007/s10916-019-1177-9.
Manikandan, T., & Bharathi, N. (2016). Lung cancer detection using fuzzy auto-seed cluster means morphological segmentation and SVM classifier. Journal of Medical Systems, 40, 1-9. https://orcid.org/10.1007/s10916-016-0539-9.
Manikandan, T., & Bharathi, N. (2011). Lung cancer diagnosis from CT images using fuzzy inference system. In Computational Intelligence and Information Technology: First International Conference, CIIT 2011, Pune, India, November 7-8, 2011. Springer Berlin Heidelberg. Proceedings, pp. 642-647. https://orcid.org/10.1007/978-3-642-25734-6.
Masood, A., Yang, P., Sheng, B., Li, H., Li, P., Qin, J., Lanfranchi, V., Kim, J., & Feng, D. D. (2019). Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT. IEEE journal of Translational Engineering in Health and Medicine, 8, 1-13. https://orcid.org/10.1109/JTEHM.2019.2955458.
Nair, M., Sandhu, S. S., & Sharma, A. K. (2018). Cancer molecular markers: A guide to cancer detection and management. Academic Press. In Seminars in Cancer Biology, Vol. 52, pp. 39-55. https://orcid.org/10.1016/j.semcancer.2018.02.002.
Nanglia, P., Kumar, S., Mahajan, A. N., Singh, P., & Rathee, D. (2021). A hybrid algorithm for lung cancer classification using SVM and Neural Networks. ICT Express, 7(3), 335-341. https://orcid.org/10.1016/j.icte.2020.06.007.
Nasrullah, N., Sang, J., Alam, M. S., Mateen, M., Cai, B., & Hu, H. (2019). Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors, 19(17), 3722. https://orcid.org/10.3390/s19173722.
Nguyen, C. C., Tran, G. S., Burie, J. C., & Nghiem, T. P. (2021). Pulmonary nodule detection based on faster R-CNN with adaptive anchor box. Ieee Access, 9, 154740-154751. https://orcid.org/10.1109/ACCESS.2021.3128942.
Pang, S., Zhang, Y., Ding, M., Wang, X., & Xie, X. (2019). A deep model for lung cancer type identification by densely connected convolutional networks and adaptive boosting. IEEE Access, 8, 4799-4805. 10.1109/ACCESS.2019.2962862.
Peña, D. M., Luo, S., & Abdelgader, A. M. (2016). Auto diagnostics of lung nodules using minimal characteristics extraction technique. Diagnostics, 6(1), 13. https://orcid.org/10.3390/diagnostics6010013.
Polat, H., & Danaei, M.H. (2019). Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture. Applied Sciences, 9(5), 940. 10.3390/app9050940.
Sahu, P., Yu, D., Dasari, M., Hou, F., & Qin, H. (2018). A lightweight multi-section CNN for lung nodule classification and malignancy estimation. IEEE Journal of Biomedical and Health Informatics, 23(3), 960-968. https://orcid.org/10.1109/JBHI.2018.2879834.
Sahu, S. P., Agrawal, P., Londhe, N. D., & Verma, S. (2019). Lung segmentation of CT images using fuzzy C-means for the detection of cancer in early stages. In Advances in Data and Information Sciences: Proceedings of ICDIS 2017, Springer Singapore. Vol. 2, pp. 167-176. https://orcid.org/10.1007/978-981-13-0277-0_14.
Santos, A. M., de Carvalho Filho, A. O., Silva, A. C., De Paiva, A. C., Nunes, R. A., & Gattass, M. (2014). Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, Tsallis entropy and SVM. Engineering Applications of Artificial Intelligence, 36, 27-39. https://orcid.org/10.1016/j.engappai.2014.07.007.
Sarker, P., Shuvo, M. M. H., Hossain, Z., & Hasan, S. (2017). Segmentation and classification of lung tumor from 3D CT image using K-means clustering algorithm. IEEE. In 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), pp. 731-736. https://orcid.org/10.1109/ICAEE.2017.8255451.
Senthil Kumar, K., Venkatalakshmi, K., & Karthikeyan, K. (2019). Lung cancer detection using image segmentation by means of various evolutionary algorithms. Computational and Mathematical Methods in Medicine, 2019, 4909846. https://orcid.org/10.1155/2019/4909846.
Setio, A. A. A., Traverso, A., De Bel, T., Berens, M. S., Van Den Bogaard, C., Cerello, P., Chen, H., Dou, Q., Fantacci, M.E., Geurts, B., Gugten, R.V., Heng, P.A., Jansen, B., de Kaste, M.M.J., Kotov, V., Lin, J.Y., Manders, J.T.M.C., Sóñora-Mengana, A, García-Naranjo, J.C., Papavasileiou, E., Prokop, M., Saletta, M., Schaefer-Prokop, C.M., Scholten, E.T., Scholten, L., Snoeren, M.M., Torres, E.L., Vandemeulebroucke, J., Walasek, N., Zuidhof, G.C.A., Ginneken, B.V., & Jacobs, C. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Medical image analysis, 42, 1-13. https://orcid.org/10.1016/j.media.2017.06.015.
Shakeel, P. M., Burhanuddin, M. A., & Desa, M. I. (2019). Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Measurement, 145, 702-712. https://orcid.org/10.1016/j.measurement.2019.05.027.
Shanthi, S., & Rajkumar, N. (2021). Lung cancer prediction using stochastic diffusion search (SDS) based feature selection and machine learning methods. Neural Processing Letters, 53, 2617-2630. https://orcid.org/10.1007/s11063-020-10192-0.
Silvestri, G. A., Tanner, N. T., Kearney, P., Vachani, A., Massion, P. P., Porter, A., Springmeyer, S.C., Fang, K.C., Midthun, D., & Mazzone, P.J. (2018). Assessment of plasma proteomics biomarker’s ability to distinguish benign from malignant lung nodules: results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) trial. Chest, 154(3), 491-500. https://orcid.org/10.1016/j.chest.2018.02.012.
Skourt, B.A., El-Hassani, A., & Majda, A. (2018). Lung CT image segmentation using deep neural networks. Procedia Computer Science, 127, 109-113. https://orcid.org/10.1016/j.procs.2018.01.104.
Sori, W. J., Feng, J., & Liu, S. (2019). Multi-path convolutional neural network for lung cancer detection. Multidimensional Systems and Signal Processing, 30, 1749-1768. https://orcid.org/10.1007/s11045-018-0626-9.
Teramoto, A., Tsukamoto, T., Kiriyama, Y., & Fujita, H. (2017). Automated classification of lung cancer types from cytological images using deep convolutional neural networks. BioMed Research International, 2017, 4067832. https://orcid.org/10.1155/2017/4067832.
Teramoto, A., & Fujita, H. (2013). Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int. J. Comput. Assist. Radiol. Surg., 8(2), 193-205. https://orcid.org/10.1007/s11548-012-0767-5.
Tiwari, L., Raja, R., Awasthi, V., Miri, R., Sinha, G. R., Alkinani, M. H., & Polat, K. (2021). Detection of lung nodule and cancer using novel Mask-3 FCM and TWEDLNN algorithms. Measurement, 172, 108882. https://orcid.org/10.1016/j.measurement.2020.108882.
Uthoff, J., Stephens, M. J., Newell Jr, J. D., Hoffman, E. A., Larson, J., Koehn, N., De Stefano, F.A., Lusk, C.M., Wenzlaff, A.S., Watza, D., Neslund-Dudas, C., Carr, L.L., Lynch, D.A., Schwartz, A.G., & Sieren, J. C. (2019). Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Medical Physics, 46(7), 3207-3216. https://orcid.org/10.1002/mp.13592.
Valluru, D., & Jeya, I. J. S. (2020). IoT with cloud based lung cancer diagnosis model using optimal support vector machine. Health Care Management Science, 23, 670-679. https://orcid.org/10.1007/s10729-019-09489-x.
Wang, W., & Charkborty, G. (2021). Automatic prognosis of lung cancer using heterogeneous deep learning models for nodule detection and eliciting its morphological features. Applied Intelligence, 51, 2471-2484. https://orcid.org/10.1007/s10489-020-01990-z.
Wu, C., Luo, C., Xiong, N., Zhang, W., & Kim, T. H. (2018). A greedy deep learning method for medical disease analysis. IEEE Access, 6, 20021-20030. https://orcid.org/10.1109/ACCESS.2018.2823979.
Xiao, Z., Liu, B., Geng, L., Zhang, F., & Liu, Y. (2020). Segmentation of lung nodules using improved 3D-UNet neural network. Symmetry, 12(11), 1787. https://orcid.org/10.3390/sym12111787.
Xie, Y., Meng, W. Y., Li, R. Z., Wang, Y. W., Qian, X., Chan, C., Yu, Z.F., Fan, X.X., Pan, H.D., Xie, C., Wu, Q.B., Yan, P.Y., Liu, L., Tang, Y.J., Yao, X.J., Wang, M.F., & Leung, E. L. H. (2021). Early lung cancer diagnostic biomarker discovery by machine learning methods. Translational Oncology, 14(1), 100907. https://orcid.org/10.1016/j.tranon.2020.100907.
Xie, Y., Xia, Y., Zhang, J., Song, Y., Feng, D., Fulham, M., & Cai, W. (2018). Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Transactions on Medical Imaging, 38(4), 991-1004. https://orcid.org/10.1109/TMI.2018.2876510.
Yadav, A. K., Tomar, D., & Agarwal, S. (2013). Clustering of lung cancer data using foggy k-means. In 2013 International Conference on Recent Trends in Information Technology (ICRTIT), IEEE, pp. 13-18. https://orcid.org/10.1109/ICRTIT.2013.6844173.
Ye, Z., Sun, B., & Xiao, Z. (2020). Machine learning identifies 10 feature miRNAs for lung squamous cell carcinoma. Gene, 749, 144669. https://orcid.org/10.1016/j.gene.2020.144669.
Yu, D., Liu, Z., Su, C., Han, Y., Duan, X., Zhang, R., Liu, X., Yang, Y., & Xu, S. (2020). Copy number variation in plasma as a tool for lung cancer prediction using Extreme Gradient Boosting (XGBoost) classifier. Thoracic Cancer, 11(1), 95-102. https://orcid.org/10.1111/1759-7714.13204.
Yu, H., Zhou, Z., & Wang, Q. (2020). Deep learning assisted predict of lung cancer on computed tomography images using the adaptive hierarchical heuristic mathematical model. IEEE Access, 8, 86400-86410. https://orcid.org/10.1109/ACCESS.2020.2992645.
Yuan, F., Lu, L., & Zou, Q. (2020). Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(8), 165822. https://orcid.org/10.1016/j.bbadis.2020.165822.