Design of low voltage high output resistance current mirror

Authors

DOI:

https://doi.org/10.52756/ijerr.2023.v30.006

Keywords:

Voltage follower, Input node, Feedback, Output resistance, Bandwidth, Supply

Abstract

A current mirror design having high output resistance operating at low supply voltage is proposed in this paper. The low voltage operation is achieved using the flipped voltage follower for current mirroring. The circuit operates at low supply with high swing with low impedance node at its output. As low impedance is one the basic requirement of a current mirror, the flipped voltage follower when used as an input shows reduced impedance. However, the observed output resistance of conventional flipped voltage follower current mirror turns to be around 700K ohm, a low value. So, for its improvement a feedback loop is used at the output of proposed current mirror. This improves the output resistance significantly without deteriorating the other performances like bandwidth to a value of 401M ohm. The proposed current mirror results in input impedance in hundreds of ohms around 330 ohm and bandwidth of 2.4GHz comparatively higher than its conventional design. The complete design is carried out using 180 nanometer-based MOS transistors and the circuit runs at 0.5 volt of dual polarity.

References

Aggarwal, B. (2022). Novel Current Mirrors Based on Folded Flipped Voltage Follower Configuration. Wireless Personal Communications, 123, 645–653. https://doi.org/10.1007/s11277-021-09150-3

Blalock, B.J., Allen, P.E., & Rincon-Mora, G. (1998). Designing 1-V op amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(7), 769-780. https://doi.org/10.1109/82.700924

Bchir, M., Aloui, I., & Hassen, N. (2020). A bulk-driven quasi-floating gate FVF current mirror for low voltage, low power applications. Integration, 74, 45-54. https://doi.org/10.1016/j.vlsi.2020.04.002

Carvajal, R. G., Ramirez-Angulo, J., Lopez-Martin, A. J., Torralba, A., Galan, J. A. G., Carlosena, A., & Chavero, F. M. (2005). The flipped voltage follower: a useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 1276-1291. https://doi.org/10.1109/TCSI.2005.851387

Della, S.R., Centurelli, F., Scotti, G., Tommasino, P., & Trifiletti, A. (2022). A Differential-to-Single-Ended Converter Based on Enhanced Body-Driven Current Mirrors Targeting Ultra-Low-Voltage OTAs. Electronics, 11, 3838. https://doi.org/10.3390/electronics11233838

Doreyatim, M. S., Akbari, M., & Nazari, M. (2019). A low-voltage gain boosting-based current mirror with high input/output dynamic range. Microelectronics Journal, 90, 88-95. https://doi.org/10.1016/j.mejo.2019.05.022

Esparza-Alfaro, F., Lopez-Martin, A.J., Carvajal, R.G., & Ramirez-Angulo, J. (2014). Highly linear micropower class AB current mirrors using Quasi-Floating Gate transistors. Microelectronics Journal, 45(10), 1261-1267. https://doi.org/10.1016/j.mejo.2014.02.006

Gupta, R., & Sharma, S. (2012). Quasi-floating gate MOSFET based low voltage current mirror. Microelectronics Journal, 43(7), 439-443. https://doi.org/10.1016/j.mejo.2012.04.006

Hasler, P., & Lande, T.S. (2001). Overview of floating-gate devices, circuits, and systems. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(1), 1-3. https://doi.org/10.1109/TCSII.2001.913180

Khateb, F. (2015). The experimental results of the bulk-driven quasi-floating-gate MOS transistor. AEU-International Journal of Electronics and Communications, 69(1), 462-466. https://doi.org/10.1016/j.aeue.2014.10.016

Kumar, P. A., Tamil, S., & Raj, N. (2021). Design of Low Voltage Quasi-floating Self Cascode Current Mirror. U. Porto Journal of Engineering, 7(4), 33-45. https://doi.org/10.24840/2183-6493_007.004_0003

Kumar, P.A., Tamil, S., & Raj, N. (2022). Design of Sub-volt High Impedance Wide Bandwidth Current Mirror for High Performance Analog Circuit. In: Advances in Intelligent Systems and Computing, 2022, 1413. https://doi.org/10.1007/978-981-16-7088-6_65

Manhas, P.S., Sharma, S., Pal, K., Mangotra, L.K., & Jamwal, K.K.S. (2008). High performance FGMOS-based low voltage current mirror. Indian Journal of Pure and Applied Physics, 46(5), 355-358.

Rajput, S.S., & Jamuar, S.S. (2001). Low voltage, low power, high performance current mirror for portable analogue and mixed mode applications. IEE Proceedings-Circuits, Devices and Systems, 148(5), 273-278. https://doi.org/10.1049/ip-cds:20010441

Ramirez-Angulo, J., Lopez-Martin, A.J., Gonzalez-Carvajal, R., & Munoz, C.F. (2004). Very low voltage analog signal processing based on quasi floating gate transistors. IEEE Journal of Solid State Circuits, 39(3), 434-442. https://doi.org/10.1109/JSSC.2003.822782

Raj, N., Singh, A.K., & Gupta, A. K. (2014a). Low power high output impedance high bandwidth QFGMOS current mirror. Microelectronics Journal, 45(8), 1132-1142. https://doi.org/10.1016/j.mejo.2014.05.005

Raj, N., Singh, A.K., & Gupta, A. K. (2014b). Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement. Electronics Letters, 50(1), 23-25. https://doi.org/10.1049/el.2013.3600

Raj, N., Singh, A.K., & Gupta, A. K. (2015). Low voltage high output impedance bulk-driven quasi-floating gate self-biased high-swing cascode current mirror. Circuit System and Signal Processing, 35(8), 2683-2703. https://doi.org/10.1007/s00034-015-0184-4

Raj, N., Singh, A.K., & Gupta, A. K. (2016). Low voltage high performance bulk-driven quasi-floating gate self-biased cascode current mirror. Microelectronics Journal, 52(1), 124-133. https://doi.org/10.1016/j.mejo.2016.04.001

Raj, N. (2021). Low Voltage FVF Current Mirror with High Bandwidth and Low Input Impedance. Iranian Journal of Electrical and Electronic Engineering, 17, 1-7. https://doi.org/10.22068/IJEEE.17.3.1972

Sharma, S., Rajput, S.S., Mangotra, L.K., & Jamuar, S.S. (2006). FGMOS current mirror: behaviour and bandwidth enhancement. Analog Integrated Circuits and Signal Processing: 46(3), 281-286. https://doi.org/10.1007/s10470-006-1625-6

Safari, L., & Azhari, S. J. (2013). A novel wide band super transistor-based voltage feedback current amplifier. International Journal of Electronics and Communication, 67, 624-631. https://doi.org/10.1016/j.aeue.2013.01.005

Shrivastava, A., Pandey, R., & Jindal, C. (2020). Low-Voltage Flipped Voltage Follower Cell Based Current Mirrors for High Frequency Applications. Wireless Personal Communication, 111, 143-161. https://doi.org/10.1007/s11277-019-06849-2

Vidhate, A.D. & Suman, S. (2021). Low Power High Performance Current Mirror – A Review. Journal of Physics: Conference Series, 1804, 012161. https://doi.org/10.1088/1742-6596/1804/1/012161

Published

2023-04-30

How to Cite

Anitha, M., Anjaneyulu, G. V. P., Desavathu, P. B., & Rao, Y. M. (2023). Design of low voltage high output resistance current mirror. International Journal of Experimental Research and Review, 30, 57–62. https://doi.org/10.52756/ijerr.2023.v30.006

Issue

Section

Articles