A review of gene mutations, conventional testing and novel approaches to cancer screening
DOI:
https://doi.org/10.52756/ijerr.2023.v30.015Keywords:
Biochemical testing, cancer, chromosomes, genetic testing, oncogenes, tumor suppressor genesAbstract
Cancer is a genetic disease caused due to mutations in the tumor suppressor genes or oncogenes involved in the cell cycle regulation. It may include mutations that may be inherited or acquired during one’s lifetime and affect single gene or multiple genes, chromosomes and their protein expression patterns, ultimately leading to a loss of control over the cell cycle and culminating in uncontrolled cell growth. With the tremendous increase in global cancer burden and early detection being the key to cure, it has become imperative that the genes be studied and new genetic and biochemical testing techniques be utilized. In this review, we have looked at various mutations involved in common cancer-causing genes, their role under normal physiological conditions, mechanisms of mutation and their occurrence in different types of cancers. Also, the review focuses on conventional and novel approaches for genetic and biochemical testing, the techniques used and their advantages and limitations.
References
Ae, G. R., Gonzaíez, A., Ae, N., Salas, A., Milne, R. L., Ana, A. E., Ae, V., Carracedo, B., Gonzaíez, E., Eva, A. E., Ae, B., Ferna´ndezferna´ndez, L. P., Ae, P. Y., Robledo, M., Ngel, A. ´, Ae, C., & Benı´tezbenı´tez, J. (2005). Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. https://doi.org/10.1007/s00439-005
Aghabozorgi, A. S., Bahreyni, A., Soleimani, A., Bahrami, A., Khazaei, M., Ferns, G. A., Avan, A., & Hassanian, S. M. (2019). Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. In Biochimie, 157, 64–71. Elsevier B.V. https://doi.org/10.1016/j.biochi.2018.11.003
Ali, M. J., Parsam, V. L., Honavar, S. G., Kannabiran, C., Vemuganti, G. K., & Reddy, V. A. (2010). RB1 gene mutations in retinoblastoma and its clinical correlation. Saudi J. Ophthalmol., 24(4), 119–123. https://doi.org/10.1016/j.sjopt.2010.05.003
Allahyar, A., Ubels, J., & de Ridder, J. (2019). A data-driven interactome of synergistic genes improves network-based cancer outcome prediction. PLoS Comput. Biol., 15(2), e1006657. https://doi.org/10.1371/journal.pcbi.1006657
Antoniou, A.C., Casadei, S., Heikkinen, T., Barrowdale, D., Pylkas, K., Roberts, J., Lee, A., Subramanian, D., de Leeneer, K., Fostira, F., Tomiak, E., Neuhausen, S. L., Teo, Z. L., Khan, S., Aittomaki, K., Moilanen, J. S., Turnbull, C., Seal, S., Mannermaa, A., & Tischkowitz, M. (2014). Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med., 371(6), 497–506. https://doi.org/10.1056/NEJMoa1400382
Ari, Ş., & Arikan, M. (2016). Next-generation sequencing: advantages, disadvantages, and future. In Plant omics: Trends and Applications, pp. 109–135. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-31703-8_5
Armour, J. A., Barton, D. E., Cockburn, D. J., & Taylor, G. R. (2002). The detection of large deletions or duplications in genomic DNA. Hum Mutat., 20(5), 325–337. https://doi.org/10.1002/humu.10133
Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4–15. https://doi.org/10.1016/j.peptides.2015.04.012
Balakrishnan, A., Bleeker, F. E., Lamba, S., Rodolfo, M., Daniotti, M., Scarpa, A., van Tilborg, A. A., Leenstra, S., Zanon, C., & Bardelli, A. (2007). Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res., 67(8), 3545–3550. https://doi.org/10.1158/0008-5472.CAN-07-0065
Boyle, J. O., Hakim, J., Koch, W., van der Riet, P., Hruban, R. H., Roa, R. A., Correo, R., Eby, Y. J., Ruppert, J. M., & Sidransky, D. (1993). The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res., 53(19), 4477–4480. https://www.ncbi.nlm.nih.gov/pubmed/8402617
Cai, Z., & Liu, Q. (2019). Understanding the Global Cancer Statistics 2018: implications for cancer control. Sci. China Life Sci., 64(6), 1017-1020. https://doi.org/10.1007/s11427-019-9816-1
Caldas, C., Hahn, S.A., da Costa, L. T., Redston, M. S., Schutte, M., Seymour, A. B., Weinstein, C. L., Hruban, R. H., Yeo, C. J., & Kern, S. E. (1994). Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet., 8(1), 27–32. https://doi.org/10.1038/ng0994-27
Caswell-Jin, J. L., Zimmer, A. D., Stedden, W., Kingham, K. E., Zhou, A. Y., & Kurian, A. W. (2019). Cascade Genetic Testing of Relatives for Hereditary Cancer Risk: Results of an Online Initiative. J. Natl. Cancer Inst., 111(1), 95–98. https://doi.org/10.1093/jnci/djy147
Chandra, H., Reddy, P. J., & Srivastava, S. (2011). Protein microarrays and novel detection platforms. Expert Rev Proteomics, 8(1), 61–79. https://doi.org/10.1586/epr.10.99
Clarke, S. C. (2005). Pyrosequencing: nucleotide sequencing technology with bacterial genotyping applications. Expert. Rev. Mol. Diagn., 5(6), 947–953. https://doi.org/10.1586/14737159.5.6.947
Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., Douville, C., Javed, A. A., Wong, F., Mattox, A., Hruban, R. H., Wolfgang, C. L., Goggins, M. G., Molin, M. D., Wang, T. L., Roden, R., Klein, A. P., Ptak, J., Dobbyn, L., & Papadopoulos, N. (2018). Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 359(6378), 926–930. https://doi.org/10.1126/science.aar3247
Connolly, D., Yang, Z., Castaldi, M., Simmons, N., Oktay, M. H., Coniglio, S., Fazzari, M. J., Verdier-Pinard, P., & Montagna, C. (2011). Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res., 13(4), R76. https://doi.org/10.1186/bcr2924
Cox, L. A., Chen, G., & Lee, E. Y. (1994). Tumor suppressor genes and their roles in breast cancer. Breast Cancer Res Treat, 32(1), 19–38. https://doi.org/10.1007/BF00666203
Croce, C. M. (2008). Oncogenes and cancer. N. Engl. J. Med., 358(5), 502–511. https://doi.org/10.1056/NEJMra072367
Cunningham, J. M., Christensen, E. R., Tester, D. J., Kim, C. Y., Roche, P. C., Burgart, L. J., & Thibodeau, S. N. (1998). Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res, 58(15), 3455–3460. https://www.ncbi.nlm.nih.gov/pubmed/9699680
Daniels, M., Goh, F., Wright, C. M., Sriram, K. B., Relan, V., Clarke, B. E., Duhig, E. E., Bowman, R. v, Yang, I. A., & Fong, K. M. (2012). Whole genome sequencing for lung cancer. J. Thorac. Dis., 4(2), 155–163. https://doi.org/10.3978/j.issn.2072-1439.2012.02.01
de Wind, N., Dekker, M., Berns, A., Radman, M., & te Riele, H. (1995). Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell, 82(2), 321–330. https://doi.org/10.1016/0092-8674(95)90319-4
Denissenko, M. F., Pao, A., Tang, M., & Pfeifer, G. P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science, 274(5286), 430–432. https://doi.org/10.1126/science.274.5286.430
di Renzo, M. F., Olivero, M., Giacomini, A., Porte, H., Chastre, E., Mirossay, L., Nordlinger, B., Bretti, S., Bottardi, S., & Giordano, S. (1995). Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res., 1(2), 147–154. https://www.ncbi.nlm.nih.gov/pubmed/9815967
Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Med., 11(1), 70. https://doi.org/10.1186/s13073-019-0689-8
Du, W., Searle, J. S., Rb, M., & Proteins, F. (2009). The Rb Pathway and Cancer Therapeutics Rb AND E2F FAMILY PROTEINS NIH Public Access. In Curr. Drug Targets, 10(7), 581-589. https://doi.org/10.2174/138945009788680392
Eastmond, D. A., Schuler, M., & Rupa, D. S. (1995). Advantages and limitations of using fluorescence in situ hybridization for the detection of aneuploidy in interphase human cells. Mutat. Res., 348(4), 153–162. https://doi.org/10.1016/0165-7992(95)90003-9
Emmerich, P., Thome-Bolduan, C., Drosten, C., Gunther, S., Ban, E., Sawinsky, I., & Schmitz, H. (2006). Reverse ELISA for IgG and IgM antibodies to detect Lassa virus infections in Africa. J. Clin. Virol., 37(4), 277–281. https://doi.org/10.1016/j.jcv.2006.08.015
Engvall, E. (1980). Enzyme immunoassay ELISA and EMIT. Methods Enzymol., 70(A), 419–439. https://doi.org/10.1016/s0076-6879(80)70067-8
Fakhrai-Rad, H., Pourmand, N., & Ronaghi, M. (2002). Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum. Mutat., 19(5), 479–485. https://doi.org/10.1002/humu.10078
Fishel, R., Lescoe, M. K., Rao, M. R., Copeland, N. G., Jenkins, N. A., Garber, J., Kane, M., & Kolodner, R. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 75(5), 1027–1038. https://doi.org/10.1016/0092-8674(93)90546-3
Fodde, R. (2002). The APC gene in colorectal cancer. Eur. J. Cancer, 38(7), 867–871. https://doi.org/10.1016/s0959-8049(02)00040-0
Foulkes, W. D., Flanders, T. Y., Pollock, P. M., & Hayward, N. K. (1997). The CDKN2A (p16) gene and human cancer. Mol. Med., 3(1), 5–20. https://doi.org/https://doi.org/10.1007/BF03401664
Furrer, D., Sanschagrin, F., Jacob, S., & Diorio, C. (2015). Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens. Am. J. Clin. Pathol., 144(5), 686–703. https://doi.org/10.1309/AJCPT41TCBUEVDQC
Gaudet, M., Fara, A. G., Beritognolo, I., & Sabatti, M. (2009). Allele-specific PCR in SNP genotyping. Methods Mol. Biol., 578, 415–424. https://doi.org/10.1007/978-1-60327-411-1_26
Ghosh, S., Tergaonkar, V., Rothlin, C. V., Correa, R. G., Bottero, V., Bist, P., Verma, I. M., & Hunter, T. (2006). Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell, 10(3), 215–226. https://doi.org/10.1016/j.ccr.2006.08.007
Gnarra, J. R., Tory, K., Weng, Y., Schmidt, L., Wei, M. H., Li, H., Latif, F., Liu, S., Chen, F., Duh, F. M., & et al. (1994). Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet., 7(1), 85–90. https://doi.org/10.1038/ng0594-85
Greenberg, R. A. (2006). BRCA mutations and childhood cancer. Cancer Biol. Ther, 5(9), 1103–1104. https://doi.org/10.4161/cbt.5.9.3370
Hall, M. J., Forman, A. D., Pilarski, R., Wiesner, G., & Giri, V. N. (2014). Gene panel testing for inherited cancer risk. J. Natl. Compr. Canc Netw., 12(9), 1339–1346. https://doi.org/10.6004/jnccn.2014.0128
Halling, K. C., & Kipp, B. R. (2007). Fluorescence in situ hybridization in diagnostic cytology. Hum. Pathol., 38(8), 1137–1144. https://doi.org/10.1016/j.humpath.2007.04.015
Burstein, H.J. (2005). The distinctive nature of HER2-positive breast cancers. N. Engl. J., Med., 353(16), 1652-1654. https://doi.org/10.1056/NEJMp058197.
Hatfield, D., Lee, B. J., Smith, D. W. E., & Oroszlan, S. (1990). Role of nonsense, frameshift, and missense suppressor tRNAs in mammalian cells. In Progress in Molecular and Subcellular Biology, pp. 115–146. Springer. https://doi.org/10.1007/978-3-642-75178-3_5
Helgadottir, H., Hoiom, V., Jonsson, G., Tuominen, R., Ingvar, C., Borg, A., Olsson, H., & Hansson, J. (2014). High risk of tobacco-related cancers in CDKN2A mutation-positive melanoma families. J. Med. Genet., 51(8), 545–552. https://doi.org/10.1136/jmedgenet-2014-102320
Hezel, A. F., Noel, M. S., Allen, J. N., Abrams, T. A., Yurgelun, M., Faris, J. E., Goyal, L., Clark, J. W., Blaszkowsky, L. S., Murphy, J. E., Zheng, H., Khorana, A. A., Connolly, G. C., Hyrien, O., Baran, A., Herr, M., Ng, K., Sheehan, S., Harris, D. J., & Zhu, A. X. (2014). Phase II study of gemcitabine, oxaliplatin in combination with panitumumab in KRAS wild-type unresectable or metastatic biliary tract and gallbladder cancer. Br J. Cancer, 111(3), 430–436. https://doi.org/10.1038/bjc.2014.343
Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991). p53 mutations in human cancers. Science, 253(5015), 49–53. https://doi.org/10.1126/science.1905840
Homig-Holzel, C., & Savola, S. (2012). Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn. Mol. Pathol., 21(4), 189–206. https://doi.org/10.1097/PDM.0b013e3182595516
Hooper, M. L. (1998). Tumour suppressor gene mutations in humans and mice: parallels and contrasts. EMBO. J., 17(23), 6783–6789. https://doi.org/10.1093/emboj/17.23.6783
Chowdhury, H., & Maitra S. (2022). Immunotherapy as novel treatment of lung cancer: a systematic review. Asian Journal of Pharmaceutical and Clinical Research, 15(12), 2022, 9-17. http://dx.doi.org/10.22159/ajpcr.2022v15i12.46133
Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M., & Martinez-Chapa, S.O. (2018). Advantages, disadvantages and modifications of conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA), pp. 67–115. Springer. https://doi.org/https://doi.org/10.1007/978-981-10-6766-2_5
Huang, J., & Manning, B. D. (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J., 412(2), 179–190. https://doi.org/10.1042/BJ20080281
Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett., 471, 61–71. https://doi.org/10.1016/j.canlet.2019.12.007
Hynes, N. E., & Stern, D. F. (1994). The biology of erbB-2/nue/HER-2 and its role in cancer. 1198(2–3), 165–184. https://doi.org/https://doi.org/10.1016/0304-419X(94)90012-4
Igaki, H., Sasaki, H., Kishi, T., Sakamoto, H., Tachimori, Y., Kato, H., Watanabe, H., Sugimura, T., & Terada, M. (1994). Highly frequent homozygous deletion of the p16 gene in esophageal cancer cell lines. Biochem. Biophys. Res. Commun., 203(2), 1090–1095. https://doi.org/10.1006/bbrc.1994.2294
Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., & Guan, K. L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955–968. https://doi.org/10.1016/j.cell.2006.06.055
Jancik, S., Drabek, J., Radzioch, D., & Hajduch, M. (2010). Clinical relevance of KRAS in human cancers. J. Biomed Biotechnol., 2010, 150960. https://doi.org/10.1155/2010/150960
Jensen, E. (2014). Technical review: In situ hybridization. Anat. Rec. (Hoboken), 297(8), 1349–1353. https://doi.org/10.1002/ar.22944
Jones, S., Hruban, R. H., Kamiyama, M., Borges, M., Zhang, X., Parsons, D. W., Lin, J. C., Palmisano, E., Brune, K., Jaffee, E. M., Iacobuzio-Donahue, C. A., Maitra, A., Parmigiani, G., Kern, S. E., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Eshleman, J. R., Goggins, M., & Klein, A. P. (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science, 324(5924), 217. https://doi.org/10.1126/science.1171202
Kalayil Nisha, & D’souza Shona. (2022). Artificial Intelligence - Opportunities in Cancer Research. National Cancer Institute. https://www.cancer.gov/research/areas/diagnosis/artificial-intelligence
Katsanis, S. H., & Katsanis, N. (2013). Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet., 14(6), 415–426. https://doi.org/10.1038/nrg3493
Kim, S., & Misra, A. (2007). SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng., 9, 289–320. https://doi.org/10.1146/annurev.bioeng.9.060906.152037
Kulasingam, V., & Diamandis, E. P. (2008). Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol., 5(10), 588–599. https://doi.org/10.1038/ncponc1187
Kuniyasu, H., Yasui, W., Kitadai, Y., Yokozaki, H., Ito, H., & Tahara, E. (1992). Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem. Biophys Res. Commun., 189(1), 227–232. https://doi.org/10.1016/0006-291x(92)91548-5
Kunkel, T. A., & Erie, D. A. (2005). DNA mismatch repair. Annu. Rev. Biochem., 74, 681–710. https://doi.org/10.1146/annurev.biochem.74.082803.133243
Kurian, A. W., & Ford, J. M. (2015). Multigene Panel Testing in Oncology Practice: How Should We Respond? JAMA Oncol., 1(3), 277–278. https://doi.org/10.1001/jamaoncol.2015.28
Landon, J., & Moffat, A. C. (1976). The radioimmunoassay of drugs. A review. Analyst., 101(1201), 225–243. https://doi.org/10.1039/an9760100225
Lee, N. Y., Hum, M., Amali, A. A., Lim, W. K., Wong, M., Myint, M. K., Tay, R. J., Ong, P. Y., Samol, J., Lim, C. W., Ang, P., Tan, M. H., Lee, S. C., & Lee, A. S. G. (2022). Whole-exome sequencing of BRCA-negative breast cancer patients and case–control analyses identify variants associated with breast cancer susceptibility. Human Genomics, 16(1). https://doi.org/10.1186/s40246-022-00435-7
Li, Y., Zhang, Y., Qiu, F., & Qiu, Z. (2011). Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis, 32(15), 1976–1983. https://doi.org/10.1002/elps.201000598
Liggett Jr., W. H., & Sidransky, D. (1998). Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol., 16(3), 1197–1206. https://doi.org/10.1200/JCO.1998.16.3.1197
Loeb, K. R., & Loeb, L. A. (2000). Significance of multiple mutations in cancer. Carcinogenesis, 21(3), 379–385. https://doi.org/10.1093/carcin/21.3.379
Loud, J. T., & Murphy, J. (2017). Cancer Screening and Early Detection in the 21st Century. In Seminars in Oncology Nursing, 33( 2), 121–128. W.B. Saunders. https://doi.org/10.1016/j.soncn.2017.02.002
Lu, H., Wang, H., & Yoon, S. W. (2019). A dynamic gradient boosting machine using genetic optimizer for practical Breast Cancer Prognosis. 116, 340–350. https://doi.org/https://doi.org/10.1016/j.eswa.2018.08.040
Lutterbach, B., Zeng, Q., Davis, L. J., Hatch, H., Hang, G., Kohl, N. E., Gibbs, J. B., & Pan, B. S. (2007). Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res., 67(5), 2081–2088. https://doi.org/10.1158/0008-5472.CAN-06-3495
Mahdieh, N., & Rabbani, B. (2013). An overview of mutation detection methods in genetic disorders. Iran J. Pediatr., 23(4), 375–388. https://www.ncbi.nlm.nih.gov/pubmed/24427490
Maher, E. R., Neumann, H. P., & Richard, S. (2011). von Hippel-Lindau disease: a clinical and scientific review. Eur. J. Hum. Genet., 19(6), 617–623. https://doi.org/10.1038/ejhg.2010.175
Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. In Cell Death and Differentiation, 26(2), 199–212. https://doi.org/10.1038/s41418-018-0246-9
Markowitz, S. D., & Bertagnolli, M. M. (2009). Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med., 361(25), 2449–2460. https://doi.org/10.1056/NEJMra0804588
Marques, S. M., & Esteves Da Silva, J. C. G. (2009). Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. In IUBMB Life, 61(1), 6–17. https://doi.org/10.1002/iub.134
Marras, S. A., Kramer, F. R., & Tyagi, S. (2003). Genotyping SNPs with molecular beacons. Methods Mol. Biol., 212, 111–128. https://doi.org/10.1385/1-59259-327-5:111
Mathios, D., Johansen, J. S., Cristiano, S., Medina, J. E., Phallen, J., Larsen, K. R., Bruhm, D. C., Niknafs, N., Ferreira, L., Adleff, V., Chiao, J. Y., Leal, A., Noe, M., White, J. R., Arun, A. S., Hruban, C., Annapragada, A. V., Jensen, S. Ø., Ørntoft, M. B. W., & Velculescu, V. E. (2021). Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nature Communications, 12(1), 5060. https://doi.org/10.1038/s41467-021-24994-w
Mazieres, J., Peters, S., Lepage, B., Cortot, A. B., Barlesi, F., Beau-Faller, M., Besse, B., Blons, H., Mansuet-Lupo, A., Urban, T., Moro-Sibilot, D., Dansin, E., Chouaid, C., Wislez, M., Diebold, J., Felip, E., Rouquette, I., Milia, J. D., & Gautschi, O. (2013). Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol., 31(16), 1997–2003. https://doi.org/10.1200/JCO.2012.45.6095
Menard, S., Pupa, S. M., Campiglio, M., & Tagliabue, E. (2003). Biologic and therapeutic role of HER2 in cancer. Oncogene, 22(42), 6570–6578. https://doi.org/10.1038/sj.onc.1206779
Menko, F. H., van Steensel, M. A., Giraud, S., Friis-Hansen, L., Richard, S., Ungari, S., Nordenskjold, M., Hansen, T. v, Solly, J., Maher, E. R., & European, B. H. D. C. (2009). Birt-Hogg-Dube syndrome: diagnosis and management. Lancet Oncol, 10(12), 1199–1206. https://doi.org/10.1016/S1470-2045(09)70188-3
Mersch, J., Jackson, M. A., Park, M., Nebgen, D., Peterson, S. K., Singletary, C., Arun, B. K., & Litton, J. K. %J C. (2015). Cancers associated with BRCA 1 and BRCA 2 mutations other than breast and ovarian. Cancer, 121(2), 269–275. https://doi.org/10.1002/cncr.29041
Milne, R. L., & Antoniou, A. C. (2011). Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Annals of Oncology, 22(Suppl.1). https://doi.org/10.1093/annonc/mdq660
Mishra, M., Tiwari, S., & Gomes, A. v. (2017). Protein purification and analysis: next generation Western blotting techniques. Expert. Rev. Proteomics, 14(11), 1037–1053. https://doi.org/10.1080/14789450.2017.1388167
Mitchell, M. J., Jain, R. K., & Langer, R. (2017). Engineering and physical sciences in oncology: challenges and opportunities. Na.t Rev. Cancer, 17(11), 659–675. https://doi.org/10.1038/nrc.2017.83
Mitri, Z., Constantine, T., & O’Regan, R. (2012). The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemother. Res. Prac.t, 2012, 743193. https://doi.org/10.1155/2012/743193
Miyoshi, Y., Nagase, H., Ando, H., Horii, A., Ichii, S., Nakatsuru, S., Aoki, T., Miki, Y., Mori, T., & Nakamura, Y. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol. Genet., 1(4), 229–233. https://doi.org/10.1093/hmg/1.4.229
Molly Campbell. (2020). Missense, Nonsense and Frameshift Mutations: A Genetic Guide. Genomics Research.
Molnar, B., Toth, K., Bartak, B. K., & Tulassay, Z. (2015). Plasma methylated septin 9: a colorectal cancer screening marker. Expert. Rev. Mol. Diagn., 15(2), 171–184. https://doi.org/10.1586/14737159.2015.975212
Murphree, A. L., & Benedict, W. F. (1984). Retinoblastoma: clues to human oncogenesis. Science, 223(4640), 1028–1033. https://doi.org/10.1126/science.6320372
Nakagawa, H., Wardell, C. P., Furuta, M., Taniguchi, H., & Fujimoto, A. (2015). Cancer whole-genome sequencing: present and future. Oncogene, 34(49), 5943–5950. https://doi.org/10.1038/onc.2015.90
Naldini, L., Vigna, E., Narsimhan, R. P., Gaudino, G., Zarnegar, R., Michalopoulos, G. K., & Comoglio, P. M. (1991). Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene, 6(4), 501–504. https://www.ncbi.nlm.nih.gov/pubmed/1827664
Neville, A. M., & Cooper, E. H. (1976). Biochemical monitoring of cancer. A review. Ann. Clin. Biochem., 13(1), 283–305. https://doi.org/10.1177/000456327601300101
Nicolosi, P., Ledet, E., Yang, S., Michalski, S., Freschi, B., O’Leary, E., Esplin, E. D., Nussbaum, R. L., & Sartor, O. (2019). Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol., 5(4), 523–528. https://doi.org/10.1001/jamaoncol.2018.6760
Nordstrom-O’Brien, M., van der Luijt, R. B., van Rooijen, E., van den Ouweland, A. M., Majoor-Krakauer, D. F., Lolkema, M. P., van Brussel, A., Voest, E. E., & Giles, R. H. (2010). Genetic analysis of von Hippel-Lindau disease. Hum. Mutat., 31(5), 521–537. https://doi.org/10.1002/humu.21219
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl. J. Med., 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
Oda, T., Tsuda, H., Scarpa, A., Sakamoto, M., & Hirohashi, S. (1992). p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res., 52(22), 6358–6364. https://www.ncbi.nlm.nih.gov/pubmed/1330291
Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2(1), a001008. https://doi.org/10.1101/cshperspect.a001008
Pramanik, V., Sarkar, B. N., Kar, M., Das, G., Malay, B. K., Sufia, K. K., Lakkakula, B. V., & Vadlamudi, R. R. (2011). A novel polymorphism in codon 25 of the KRAS gene associated with gallbladder carcinoma patients of the eastern part of India. Genet Test Mol. Biomarkers, 15(6), 431–434. https://doi.org/10.1089/gtmb.2010.0194
Puig-Butille, J. A., Escamez, M. J., Garcia-Garcia, F., Tell-Marti, G., Fabra, A., Martinez-Santamaria, L., Badenas, C., Aguilera, P., Pevida, M., Dopazo, J., del Rio, M., & Puig, S. (2014). Capturing the biological impact of CDKN2A and MC1R genes as an early predisposing event in melanoma and non melanoma skin cancer. Oncotarget., 5(6), 1439–1451. https://doi.org/10.18632/oncotarget.1444
Rabbani, B., Tekin, M., & Mahdieh, N. (2014). The promise of whole-exome sequencing in medical genetics. In Journal of Human Genetics, 59(1), 5–15. https://doi.org/10.1038/jhg.2013.114
Rajasekharan, S. K., & Raman, T. (2013). Ras and Ras mutations in cancer. In Central European Journal of Biology, 8(7), 609–624). https://doi.org/10.2478/s11535-013-0158-5
Rayess, H., Wang, M. B., & Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. Int. J. Cancer, 130(8), 1715–1725. https://doi.org/10.1002/ijc.27316
Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. In Genes and Cancer, 2(4), 466–474. https://doi.org/10.1177/1947601911408889
Ronaghi, M. (2003). Pyrosequencing for SNP genotyping. In Single Nucleotide Polymorphisms, pp. 189–195. Springer. https://doi.org/10.1385/1-59259-327-5:189
Samatar, A. A., & Poulikakos, P. I. (2014). Targeting RAS-ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov., 13(12), 928–942. https://doi.org/10.1038/nrd4281
Sampson, J. R., & Harris, P. C. (1994). The molecular genetics of tuberous sclerosis. Hum. Mol. Genet., 3 Spec No(suppl_1), 1477–1480. https://doi.org/10.1093/hmg/3.suppl_1.1477
Santin, A. D., Bellone, S., Gokden, M., Palmieri, M., Dunn, D., Agha, J., Roman, J. J., Hutchins, L., Pecorelli, S., O’Brien, T., Cannon, M. J., & Parham, G. P. (2002). Overexpression of HER-2/neu in uterine serous papillary cancer. Clin. Cancer Res., 8(5), 1271–1279. https://www.ncbi.nlm.nih.gov/pubmed/12006548
Schmidt, L., Duh, F. M., Chen, F., Kishida, T., Glenn, G., Choyke, P., Scherer, S. W., Zhuang, Z., Lubensky, I., Dean, M., Allikmets, R., Chidambaram, A., Bergerheim, U. R., Feltis, J. T., Casadevall, C., Zamarron, A., Bernues, M., Richard, S., Lips, C. J., & Zbar, B. (1997). Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet., 16(1), 68–73. https://doi.org/10.1038/ng0597-68
Schmidt, L. S., & Linehan, W. M. (2018). FLCN: The causative gene for Birt-Hogg-Dubé syndrome. In Gene, 640, 28–42. Elsevier B.V. https://doi.org/10.1016/j.gene.2017.09.044
Seng, T. J., Currey, N., Cooper, W. A., Lee, C. S., Chan, C., Horvath, L., Sutherland, R. L., Kennedy, C., McCaughan, B., & Kohonen-Corish, M. R. (2008). DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Br. J. Cancer, 99(2), 375–382. https://doi.org/10.1038/sj.bjc.6604452
Shao, Z., & Robbins, P. D. (1995). Differential regulation of E2F and Sp1-mediated transcription by G1 cyclins. Oncogene, 10(2), 221–228. https://www.ncbi.nlm.nih.gov/pubmed/7838522
Sherr, C. J., & McCormick, F. (2002). The RB and p53 pathways in cancer. Cancer Cell, 2(2), 103–112. https://doi.org/10.1016/s1535-6108(02)00102-2
Slamon, D. J. (1987). Proto-oncogenes and human cancers. Mass Medical Soc. http://dx.doi.org/10.1056/NEJM198710083171509
Sobrino, B., Brion, M., & Carracedo, A. (2005). SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci. Int., 154(2–3), 181–194. https://doi.org/10.1016/j.forsciint.2004.10.020
Spirio, L., Olschwang, S., Groden, J., Robertson, M., Samowitz, W., Joslyn, G., Gelbert, L., Thliveris, A., Carlson, M., & Otterud, B. (1993). Alleles of the APC gene: an attenuated form of familial polyposis. Cell, 75(5), 951–957. https://doi.org/10.1016/0092-8674(93)90538-2
Sun, D., Wang, M., & Li, A. (2018). A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(3), 841-850. https://doi.org/10.1109/tcbb.2018.2806438
Syvanen, A. C. (1999). From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat, 13(1), 1–10. https://doi.org/10.1002/(SICI)1098-1004(1999)13:1<1::AID-HUMU1>3.0.CO;2-I
Tada, M., Omata, M., & Ohto, M. (1991). Clinical application of ras gene mutation for diagnosis of pancreatic adenocarcinoma. Gastroenterology, 100(1), 233–238. https://doi.org/10.1016/0016-5085(91)90606-l
Tai, W., Mahato, R., & Cheng, K. (2010). The role of HER2 in cancer therapy and targeted drug delivery. J. Control. Release, 146(3), 264–275. https://doi.org/10.1016/j.jconrel.2010.04.009
Tapia, T., Smalley, S. v, Kohen, P., Munoz, A., Solis, L. M., Corvalan, A., Faundez, P., Devoto, L., Camus, M., Alvarez, M., & Carvallo, P. (2008). Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors. Epigenetics, 3(3), 157–163. https://doi.org/10.4161/epi.3.3.6387
Tawfik, H. M., El-Maqsoud, N. M., Hak, B. H., & El-Sherbiny, Y. M. (2011). Head and neck squamous cell carcinoma: mismatch repair immunohistochemistry and promoter hypermethylation of hMLH1 gene. Am. J. Otolaryngol., 32(6), 528–536. https://doi.org/10.1016/j.amjoto.2010.11.005
Tokhtaeva, E., Capri, J., Marcus, E. A., Whitelegge, J. P., Khuzakhmetova, V., Bukharaeva, E., Deiss-Yehiely, N., Dada, L. A., Sachs, G., Fernandez-Salas, E., & Vagin, O. (2015). Septin dynamics are essential for exocytosis. J. Biol. Chem., 290(9), 5280–5297. https://doi.org/10.1074/jbc.M114.616201
Tomasz M. Beer. (2021). Examining Developments in Multicancer Early Detection: Highlights of New Clinical Data from Recent Conferences. www.ajmc.com/ce
Toth, K., Galamb, O., Spisak, S., Wichmann, B., Sipos, F., Valcz, G., Leiszter, K., Molnar, B., & Tulassay, Z. (2011). The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer. Pathol. Oncol. Res., 17(3), 503–509. https://doi.org/10.1007/s12253-010-9338-7
Truninger, K., Menigatti, M., Luz, J., Russell, A., Haider, R., Gebbers, J. O., Bannwart, F., Yurtsever, H., Neuweiler, J., Riehle, H. M., Cattaruzza, M. S., Heinimann, K., Schar, P., Jiricny, J., & Marra, G. (2005). Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology, 128(5), 1160–1171. https://doi.org/10.1053/j.gastro.2005.01.056
Uehara, H., Miyamoto, M., Kato, K., Cho, Y., Kurokawa, T., Murakami, S., Fukunaga, A., Ebihara, Y., Kaneko, H., Hashimoto, H., Murakami, Y., Shichinohe, T., Kawarada, Y., Itoh, T., Okushiba, S., Kondo, S., & Katoh, H. (2005). Deficiency of hMLH1 and hMSH2 expression is a poor prognostic factor in esophageal squamous cell carcinoma. J. Surg. Oncol., 92(2), 109–115. https://doi.org/10.1002/jso.20332
van Boxtel, R., Kuiper, R. v, Toonen, P. W., van Heesch, S., Hermsen, R., de Bruin, A., & Cuppen, E. (2011). Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am. J. Pathol., 179(4), 1616–1622. https://doi.org/10.1016/j.ajpath.2011.06.036
Venkitaraman, A. R. (2009). Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu. Rev. Pathol, 4, 461–487.
https://doi.org/10.1146/annurev.pathol.3.121806.151422
Victor V, & Stephen C. (2019). Cell-free DNA for assessing and/or treating cancer.
Vogelstein, & Kinzler. (2019). Methods and materials for assessing and treating cancer.
Volpi, E. v, & Bridger, J. M. (2008). FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques, 45(4), 385–386, 388, 390. https://doi.org/10.2144/000112811
Wagner, A., Barrows, A., Wijnen, J. T., van der Klift, H., Franken, P. F., Verkuijlen, P., Nakagawa, H., Geugien, M., Jaghmohan-Changur, S., Breukel, C., Meijers-Heijboer, H., Morreau, H., van Puijenbroek, M., Burn, J., Coronel, S., Kinarski, Y., Okimoto, R., Watson, P., Lynch, J. F., & Fodde, R. (2003). Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am. J. Hum. Genet., 72(5), 1088–1100. https://doi.org/10.1086/373963
Waldmann, T. A., & McIntire, K. R. (1974). The use of a radioimmunoassay for alpha-fetoprotein in the diagnosis of malignancy. Cancer, 34(4 Suppl), 1510-1515.
Wang, Z., Sun, K., Jing, C., Cao, H., Ma, R., & Wu, J. (2019). Comparison of droplet digital PCR and direct Sanger sequencing for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma. J. Clin. Lab. Anal., 33(6), e22902. https://doi.org/10.1002/jcla.22902
Wasserkort, R., Kalmar, A., Valcz, G., Spisak, S., Krispin, M., Toth, K., Tulassay, Z., Sledziewski, A. Z., & Molnar, B. (2013). Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer, 13, 398. https://doi.org/10.1186/1471-2407-13-398
Wise, J. F., & Lawrence, M. S. (2019). Huge whole-genome study of human metastatic cancers. Nature, 575(7781), 60–61. https://doi.org/10.1038/d41586-019-03123-0
Witkiewicz, A. K., & Knudsen, E. S. (2014). Retinoblastoma tumor suppressor pathway in breast cancer: Prognosis, precision medicine, and therapeutic interventions. In Breast Cancer Research, 16(2), 207. https://doi.org/10.1186/bcr3652
Xia, B., Sheng, Q., Nakanishi, K., Ohashi, A., Wu, J., Christ, N., Liu, X., Jasin, M., Couch, F. J., & Livingston, D. M. (2006). Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell, 22(6), 719–729.
https://doi.org/10.1016/j.molcel.2006.05.022
Yano, T., Ochiai, A., Doi, T., Hashizume, K., Nakanishi, M., Ouchi, K., Tanaka, Y., & Ohtsu, A. (2004). Expression of HER2 in gastric cancer: Comparison between protein expression and gene amplification using a new commercial kit. Journal of Clinical Oncology, 22(14_suppl), 4053–4053. https://doi.org/10.1200/jco.2004.22.90140.4053
Zhang, Y., Xia, M., Jin, K., Wang, S., Wei, H., Fan, C., Wu, Y., Li, X., Li, X., Li, G., Zeng, Z., & Xiong, W. (2018). Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer, 17(1), 45. https://doi.org/10.1186/s12943-018-0796-y
Ziegler, A., Leffell, D. J., Kunala, S., Sharma, H. W., Gailani, M., Simon, J. A., Halperin, A. J., Baden, H. P., Shapiro, P. E., & Bale, A. E. (1993). Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl. Acad. Sci. USA, 90(9), 4216–4220. https://doi.org/10.1073/pnas.90.9.4216.