A review of gene mutations, conventional testing and novel approaches to cancer screening

  • Namrata Pramod Kulkarni Vivekanand Education Society’s College of Pharmacy, Hashu Advani Memorial Complex, Collector’s Colony, Mumbai-400072, India https://orcid.org/0000-0002-6166-3911
  • Shivali Hargovind Tank Vivekanand Education Society’s College of Pharmacy, Hashu Advani Memorial Complex, Collector’s Colony, Mumbai-400072, India https://orcid.org/0000-0001-6138-4878
  • Pradnya Nikhil Korlekar Vivekanand Education Society’s College of Pharmacy, Hashu Advani Memorial Complex, Collector’s Colony, Mumbai-400072, India https://orcid.org/0000-0002-1619-8299
  • Supriya Shrihari Shidhaye Vivekanand Education Society’s College of Pharmacy, Hashu Advani Memorial Complex, Collector’s Colony, Mumbai-400072, India https://orcid.org/0000-0003-0809-3355
  • Pratik Barve Vivekanand Education Society’s College of Pharmacy, Hashu Advani Memorial Complex, Collector’s Colony, Mumbai-400072, India https://orcid.org/0000-0002-2694-6262
Keywords: Biochemical testing, cancer, chromosomes, genetic testing, oncogenes, tumor suppressor genes

Abstract

Cancer is a genetic disease caused due to mutations in the tumor suppressor genes or oncogenes involved in the cell cycle regulation. It may include mutations that may be inherited or acquired during one’s lifetime and affect single gene or multiple genes, chromosomes and their protein expression patterns, ultimately leading to a loss of control over the cell cycle and culminating in uncontrolled cell growth. With the tremendous increase in global cancer burden and early detection being the key to cure, it has become imperative that the genes be studied and new genetic and biochemical testing techniques be utilized. In this review, we have looked at various mutations involved in common cancer-causing genes, their role under normal physiological conditions, mechanisms of mutation and their occurrence in different types of cancers. Also, the review focuses on conventional and novel approaches for genetic and biochemical testing, the techniques used and their advantages and limitations.

References

Ae, G. R., Gonzaíez, A., Ae, N., Salas, A., Milne, R. L., Ana, A. E., Ae, V., Carracedo, B., Gonzaíez, E., Eva, A. E., Ae, B., Ferna´ndezferna´ndez, L. P., Ae, P. Y., Robledo, M., Ngel, A. ´, Ae, C., & Benı´tezbenı´tez, J. (2005). Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. https://doi.org/10.1007/s00439-005

Aghabozorgi, A. S., Bahreyni, A., Soleimani, A., Bahrami, A., Khazaei, M., Ferns, G. A., Avan, A., & Hassanian, S. M. (2019). Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. In Biochimie, 157, 64–71. Elsevier B.V. https://doi.org/10.1016/j.biochi.2018.11.003

Ali, M. J., Parsam, V. L., Honavar, S. G., Kannabiran, C., Vemuganti, G. K., & Reddy, V. A. (2010). RB1 gene mutations in retinoblastoma and its clinical correlation. Saudi J. Ophthalmol., 24(4), 119–123. https://doi.org/10.1016/j.sjopt.2010.05.003

Allahyar, A., Ubels, J., & de Ridder, J. (2019). A data-driven interactome of synergistic genes improves network-based cancer outcome prediction. PLoS Comput. Biol., 15(2), e1006657. https://doi.org/10.1371/journal.pcbi.1006657

Antoniou, A.C., Casadei, S., Heikkinen, T., Barrowdale, D., Pylkas, K., Roberts, J., Lee, A., Subramanian, D., de Leeneer, K., Fostira, F., Tomiak, E., Neuhausen, S. L., Teo, Z. L., Khan, S., Aittomaki, K., Moilanen, J. S., Turnbull, C., Seal, S., Mannermaa, A., & Tischkowitz, M. (2014). Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med., 371(6), 497–506. https://doi.org/10.1056/NEJMoa1400382

Ari, Ş., & Arikan, M. (2016). Next-generation sequencing: advantages, disadvantages, and future. In Plant omics: Trends and Applications, pp. 109–135. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-31703-8_5

Armour, J. A., Barton, D. E., Cockburn, D. J., & Taylor, G. R. (2002). The detection of large deletions or duplications in genomic DNA. Hum Mutat., 20(5), 325–337. https://doi.org/10.1002/humu.10133

Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4–15. https://doi.org/10.1016/j.peptides.2015.04.012

Balakrishnan, A., Bleeker, F. E., Lamba, S., Rodolfo, M., Daniotti, M., Scarpa, A., van Tilborg, A. A., Leenstra, S., Zanon, C., & Bardelli, A. (2007). Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res., 67(8), 3545–3550. https://doi.org/10.1158/0008-5472.CAN-07-0065

Boyle, J. O., Hakim, J., Koch, W., van der Riet, P., Hruban, R. H., Roa, R. A., Correo, R., Eby, Y. J., Ruppert, J. M., & Sidransky, D. (1993). The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res., 53(19), 4477–4480. https://www.ncbi.nlm.nih.gov/pubmed/8402617

Cai, Z., & Liu, Q. (2019). Understanding the Global Cancer Statistics 2018: implications for cancer control. Sci. China Life Sci., 64(6), 1017-1020. https://doi.org/10.1007/s11427-019-9816-1

Caldas, C., Hahn, S.A., da Costa, L. T., Redston, M. S., Schutte, M., Seymour, A. B., Weinstein, C. L., Hruban, R. H., Yeo, C. J., & Kern, S. E. (1994). Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet., 8(1), 27–32. https://doi.org/10.1038/ng0994-27

Caswell-Jin, J. L., Zimmer, A. D., Stedden, W., Kingham, K. E., Zhou, A. Y., & Kurian, A. W. (2019). Cascade Genetic Testing of Relatives for Hereditary Cancer Risk: Results of an Online Initiative. J. Natl. Cancer Inst., 111(1), 95–98. https://doi.org/10.1093/jnci/djy147

Chandra, H., Reddy, P. J., & Srivastava, S. (2011). Protein microarrays and novel detection platforms. Expert Rev Proteomics, 8(1), 61–79. https://doi.org/10.1586/epr.10.99

Clarke, S. C. (2005). Pyrosequencing: nucleotide sequencing technology with bacterial genotyping applications. Expert. Rev. Mol. Diagn., 5(6), 947–953. https://doi.org/10.1586/14737159.5.6.947

Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., Douville, C., Javed, A. A., Wong, F., Mattox, A., Hruban, R. H., Wolfgang, C. L., Goggins, M. G., Molin, M. D., Wang, T. L., Roden, R., Klein, A. P., Ptak, J., Dobbyn, L., & Papadopoulos, N. (2018). Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 359(6378), 926–930. https://doi.org/10.1126/science.aar3247

Connolly, D., Yang, Z., Castaldi, M., Simmons, N., Oktay, M. H., Coniglio, S., Fazzari, M. J., Verdier-Pinard, P., & Montagna, C. (2011). Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res., 13(4), R76. https://doi.org/10.1186/bcr2924

Cox, L. A., Chen, G., & Lee, E. Y. (1994). Tumor suppressor genes and their roles in breast cancer. Breast Cancer Res Treat, 32(1), 19–38. https://doi.org/10.1007/BF00666203

Croce, C. M. (2008). Oncogenes and cancer. N. Engl. J. Med., 358(5), 502–511. https://doi.org/10.1056/NEJMra072367

Cunningham, J. M., Christensen, E. R., Tester, D. J., Kim, C. Y., Roche, P. C., Burgart, L. J., & Thibodeau, S. N. (1998). Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res, 58(15), 3455–3460. https://www.ncbi.nlm.nih.gov/pubmed/9699680

Daniels, M., Goh, F., Wright, C. M., Sriram, K. B., Relan, V., Clarke, B. E., Duhig, E. E., Bowman, R. v, Yang, I. A., & Fong, K. M. (2012). Whole genome sequencing for lung cancer. J. Thorac. Dis., 4(2), 155–163. https://doi.org/10.3978/j.issn.2072-1439.2012.02.01

de Wind, N., Dekker, M., Berns, A., Radman, M., & te Riele, H. (1995). Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell, 82(2), 321–330. https://doi.org/10.1016/0092-8674(95)90319-4

Denissenko, M. F., Pao, A., Tang, M., & Pfeifer, G. P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science, 274(5286), 430–432. https://doi.org/10.1126/science.274.5286.430

di Renzo, M. F., Olivero, M., Giacomini, A., Porte, H., Chastre, E., Mirossay, L., Nordlinger, B., Bretti, S., Bottardi, S., & Giordano, S. (1995). Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin. Cancer Res., 1(2), 147–154. https://www.ncbi.nlm.nih.gov/pubmed/9815967

Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Med., 11(1), 70. https://doi.org/10.1186/s13073-019-0689-8

Du, W., Searle, J. S., Rb, M., & Proteins, F. (2009). The Rb Pathway and Cancer Therapeutics Rb AND E2F FAMILY PROTEINS NIH Public Access. In Curr. Drug Targets, 10(7), 581-589. https://doi.org/10.2174/138945009788680392

Eastmond, D. A., Schuler, M., & Rupa, D. S. (1995). Advantages and limitations of using fluorescence in situ hybridization for the detection of aneuploidy in interphase human cells. Mutat. Res., 348(4), 153–162. https://doi.org/10.1016/0165-7992(95)90003-9

Emmerich, P., Thome-Bolduan, C., Drosten, C., Gunther, S., Ban, E., Sawinsky, I., & Schmitz, H. (2006). Reverse ELISA for IgG and IgM antibodies to detect Lassa virus infections in Africa. J. Clin. Virol., 37(4), 277–281. https://doi.org/10.1016/j.jcv.2006.08.015

Engvall, E. (1980). Enzyme immunoassay ELISA and EMIT. Methods Enzymol., 70(A), 419–439. https://doi.org/10.1016/s0076-6879(80)70067-8

Fakhrai-Rad, H., Pourmand, N., & Ronaghi, M. (2002). Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum. Mutat., 19(5), 479–485. https://doi.org/10.1002/humu.10078

Fishel, R., Lescoe, M. K., Rao, M. R., Copeland, N. G., Jenkins, N. A., Garber, J., Kane, M., & Kolodner, R. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 75(5), 1027–1038. https://doi.org/10.1016/0092-8674(93)90546-3

Fodde, R. (2002). The APC gene in colorectal cancer. Eur. J. Cancer, 38(7), 867–871. https://doi.org/10.1016/s0959-8049(02)00040-0

Foulkes, W. D., Flanders, T. Y., Pollock, P. M., & Hayward, N. K. (1997). The CDKN2A (p16) gene and human cancer. Mol. Med., 3(1), 5–20. https://doi.org/https://doi.org/10.1007/BF03401664

Furrer, D., Sanschagrin, F., Jacob, S., & Diorio, C. (2015). Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens. Am. J. Clin. Pathol., 144(5), 686–703. https://doi.org/10.1309/AJCPT41TCBUEVDQC

Gaudet, M., Fara, A. G., Beritognolo, I., & Sabatti, M. (2009). Allele-specific PCR in SNP genotyping. Methods Mol. Biol., 578, 415–424. https://doi.org/10.1007/978-1-60327-411-1_26

Ghosh, S., Tergaonkar, V., Rothlin, C. V., Correa, R. G., Bottero, V., Bist, P., Verma, I. M., & Hunter, T. (2006). Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell, 10(3), 215–226. https://doi.org/10.1016/j.ccr.2006.08.007

Gnarra, J. R., Tory, K., Weng, Y., Schmidt, L., Wei, M. H., Li, H., Latif, F., Liu, S., Chen, F., Duh, F. M., & et al. (1994). Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet., 7(1), 85–90. https://doi.org/10.1038/ng0594-85

Greenberg, R. A. (2006). BRCA mutations and childhood cancer. Cancer Biol. Ther, 5(9), 1103–1104. https://doi.org/10.4161/cbt.5.9.3370

Hall, M. J., Forman, A. D., Pilarski, R., Wiesner, G., & Giri, V. N. (2014). Gene panel testing for inherited cancer risk. J. Natl. Compr. Canc Netw., 12(9), 1339–1346. https://doi.org/10.6004/jnccn.2014.0128

Halling, K. C., & Kipp, B. R. (2007). Fluorescence in situ hybridization in diagnostic cytology. Hum. Pathol., 38(8), 1137–1144. https://doi.org/10.1016/j.humpath.2007.04.015

Burstein, H.J. (2005). The distinctive nature of HER2-positive breast cancers. N. Engl. J., Med., 353(16), 1652-1654. https://doi.org/10.1056/NEJMp058197.

Hatfield, D., Lee, B. J., Smith, D. W. E., & Oroszlan, S. (1990). Role of nonsense, frameshift, and missense suppressor tRNAs in mammalian cells. In Progress in Molecular and Subcellular Biology, pp. 115–146. Springer. https://doi.org/10.1007/978-3-642-75178-3_5

Helgadottir, H., Hoiom, V., Jonsson, G., Tuominen, R., Ingvar, C., Borg, A., Olsson, H., & Hansson, J. (2014). High risk of tobacco-related cancers in CDKN2A mutation-positive melanoma families. J. Med. Genet., 51(8), 545–552. https://doi.org/10.1136/jmedgenet-2014-102320

Hezel, A. F., Noel, M. S., Allen, J. N., Abrams, T. A., Yurgelun, M., Faris, J. E., Goyal, L., Clark, J. W., Blaszkowsky, L. S., Murphy, J. E., Zheng, H., Khorana, A. A., Connolly, G. C., Hyrien, O., Baran, A., Herr, M., Ng, K., Sheehan, S., Harris, D. J., & Zhu, A. X. (2014). Phase II study of gemcitabine, oxaliplatin in combination with panitumumab in KRAS wild-type unresectable or metastatic biliary tract and gallbladder cancer. Br J. Cancer, 111(3), 430–436. https://doi.org/10.1038/bjc.2014.343

Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991). p53 mutations in human cancers. Science, 253(5015), 49–53. https://doi.org/10.1126/science.1905840

Homig-Holzel, C., & Savola, S. (2012). Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn. Mol. Pathol., 21(4), 189–206. https://doi.org/10.1097/PDM.0b013e3182595516

Hooper, M. L. (1998). Tumour suppressor gene mutations in humans and mice: parallels and contrasts. EMBO. J., 17(23), 6783–6789. https://doi.org/10.1093/emboj/17.23.6783

Chowdhury, H., & Maitra S. (2022). Immunotherapy as novel treatment of lung cancer: a systematic review. Asian Journal of Pharmaceutical and Clinical Research, 15(12), 2022, 9-17. http://dx.doi.org/10.22159/ajpcr.2022v15i12.46133

Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M., & Martinez-Chapa, S.O. (2018). Advantages, disadvantages and modifications of conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA), pp. 67–115. Springer. https://doi.org/https://doi.org/10.1007/978-981-10-6766-2_5

Huang, J., & Manning, B. D. (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J., 412(2), 179–190. https://doi.org/10.1042/BJ20080281

Huang, S., Yang, J., Fong, S., & Zhao, Q. (2020). Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett., 471, 61–71. https://doi.org/10.1016/j.canlet.2019.12.007

Hynes, N. E., & Stern, D. F. (1994). The biology of erbB-2/nue/HER-2 and its role in cancer. 1198(2–3), 165–184. https://doi.org/https://doi.org/10.1016/0304-419X(94)90012-4

Igaki, H., Sasaki, H., Kishi, T., Sakamoto, H., Tachimori, Y., Kato, H., Watanabe, H., Sugimura, T., & Terada, M. (1994). Highly frequent homozygous deletion of the p16 gene in esophageal cancer cell lines. Biochem. Biophys. Res. Commun., 203(2), 1090–1095. https://doi.org/10.1006/bbrc.1994.2294

Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., & Guan, K. L. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955–968. https://doi.org/10.1016/j.cell.2006.06.055

Jancik, S., Drabek, J., Radzioch, D., & Hajduch, M. (2010). Clinical relevance of KRAS in human cancers. J. Biomed Biotechnol., 2010, 150960. https://doi.org/10.1155/2010/150960

Jensen, E. (2014). Technical review: In situ hybridization. Anat. Rec. (Hoboken), 297(8), 1349–1353. https://doi.org/10.1002/ar.22944

Jones, S., Hruban, R. H., Kamiyama, M., Borges, M., Zhang, X., Parsons, D. W., Lin, J. C., Palmisano, E., Brune, K., Jaffee, E. M., Iacobuzio-Donahue, C. A., Maitra, A., Parmigiani, G., Kern, S. E., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Eshleman, J. R., Goggins, M., & Klein, A. P. (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science, 324(5924), 217. https://doi.org/10.1126/science.1171202

Kalayil Nisha, & D’souza Shona. (2022). Artificial Intelligence - Opportunities in Cancer Research. National Cancer Institute. https://www.cancer.gov/research/areas/diagnosis/artificial-intelligence

Katsanis, S. H., & Katsanis, N. (2013). Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet., 14(6), 415–426. https://doi.org/10.1038/nrg3493

Kim, S., & Misra, A. (2007). SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng., 9, 289–320. https://doi.org/10.1146/annurev.bioeng.9.060906.152037

Kulasingam, V., & Diamandis, E. P. (2008). Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol., 5(10), 588–599. https://doi.org/10.1038/ncponc1187

Kuniyasu, H., Yasui, W., Kitadai, Y., Yokozaki, H., Ito, H., & Tahara, E. (1992). Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem. Biophys Res. Commun., 189(1), 227–232. https://doi.org/10.1016/0006-291x(92)91548-5

Kunkel, T. A., & Erie, D. A. (2005). DNA mismatch repair. Annu. Rev. Biochem., 74, 681–710. https://doi.org/10.1146/annurev.biochem.74.082803.133243

Kurian, A. W., & Ford, J. M. (2015). Multigene Panel Testing in Oncology Practice: How Should We Respond? JAMA Oncol., 1(3), 277–278. https://doi.org/10.1001/jamaoncol.2015.28

Landon, J., & Moffat, A. C. (1976). The radioimmunoassay of drugs. A review. Analyst., 101(1201), 225–243. https://doi.org/10.1039/an9760100225

Lee, N. Y., Hum, M., Amali, A. A., Lim, W. K., Wong, M., Myint, M. K., Tay, R. J., Ong, P. Y., Samol, J., Lim, C. W., Ang, P., Tan, M. H., Lee, S. C., & Lee, A. S. G. (2022). Whole-exome sequencing of BRCA-negative breast cancer patients and case–control analyses identify variants associated with breast cancer susceptibility. Human Genomics, 16(1). https://doi.org/10.1186/s40246-022-00435-7

Li, Y., Zhang, Y., Qiu, F., & Qiu, Z. (2011). Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis, 32(15), 1976–1983. https://doi.org/10.1002/elps.201000598

Liggett Jr., W. H., & Sidransky, D. (1998). Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol., 16(3), 1197–1206. https://doi.org/10.1200/JCO.1998.16.3.1197

Loeb, K. R., & Loeb, L. A. (2000). Significance of multiple mutations in cancer. Carcinogenesis, 21(3), 379–385. https://doi.org/10.1093/carcin/21.3.379

Loud, J. T., & Murphy, J. (2017). Cancer Screening and Early Detection in the 21st Century. In Seminars in Oncology Nursing, 33( 2), 121–128. W.B. Saunders. https://doi.org/10.1016/j.soncn.2017.02.002

Lu, H., Wang, H., & Yoon, S. W. (2019). A dynamic gradient boosting machine using genetic optimizer for practical Breast Cancer Prognosis. 116, 340–350. https://doi.org/https://doi.org/10.1016/j.eswa.2018.08.040

Lutterbach, B., Zeng, Q., Davis, L. J., Hatch, H., Hang, G., Kohl, N. E., Gibbs, J. B., & Pan, B. S. (2007). Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res., 67(5), 2081–2088. https://doi.org/10.1158/0008-5472.CAN-06-3495

Mahdieh, N., & Rabbani, B. (2013). An overview of mutation detection methods in genetic disorders. Iran J. Pediatr., 23(4), 375–388. https://www.ncbi.nlm.nih.gov/pubmed/24427490

Maher, E. R., Neumann, H. P., & Richard, S. (2011). von Hippel-Lindau disease: a clinical and scientific review. Eur. J. Hum. Genet., 19(6), 617–623. https://doi.org/10.1038/ejhg.2010.175

Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. In Cell Death and Differentiation, 26(2), 199–212. https://doi.org/10.1038/s41418-018-0246-9

Markowitz, S. D., & Bertagnolli, M. M. (2009). Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med., 361(25), 2449–2460. https://doi.org/10.1056/NEJMra0804588

Marques, S. M., & Esteves Da Silva, J. C. G. (2009). Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. In IUBMB Life, 61(1), 6–17. https://doi.org/10.1002/iub.134

Marras, S. A., Kramer, F. R., & Tyagi, S. (2003). Genotyping SNPs with molecular beacons. Methods Mol. Biol., 212, 111–128. https://doi.org/10.1385/1-59259-327-5:111

Mathios, D., Johansen, J. S., Cristiano, S., Medina, J. E., Phallen, J., Larsen, K. R., Bruhm, D. C., Niknafs, N., Ferreira, L., Adleff, V., Chiao, J. Y., Leal, A., Noe, M., White, J. R., Arun, A. S., Hruban, C., Annapragada, A. V., Jensen, S. Ø., Ørntoft, M. B. W., & Velculescu, V. E. (2021). Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nature Communications, 12(1), 5060. https://doi.org/10.1038/s41467-021-24994-w

Mazieres, J., Peters, S., Lepage, B., Cortot, A. B., Barlesi, F., Beau-Faller, M., Besse, B., Blons, H., Mansuet-Lupo, A., Urban, T., Moro-Sibilot, D., Dansin, E., Chouaid, C., Wislez, M., Diebold, J., Felip, E., Rouquette, I., Milia, J. D., & Gautschi, O. (2013). Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol., 31(16), 1997–2003. https://doi.org/10.1200/JCO.2012.45.6095

Menard, S., Pupa, S. M., Campiglio, M., & Tagliabue, E. (2003). Biologic and therapeutic role of HER2 in cancer. Oncogene, 22(42), 6570–6578. https://doi.org/10.1038/sj.onc.1206779

Menko, F. H., van Steensel, M. A., Giraud, S., Friis-Hansen, L., Richard, S., Ungari, S., Nordenskjold, M., Hansen, T. v, Solly, J., Maher, E. R., & European, B. H. D. C. (2009). Birt-Hogg-Dube syndrome: diagnosis and management. Lancet Oncol, 10(12), 1199–1206. https://doi.org/10.1016/S1470-2045(09)70188-3

Mersch, J., Jackson, M. A., Park, M., Nebgen, D., Peterson, S. K., Singletary, C., Arun, B. K., & Litton, J. K. %J C. (2015). Cancers associated with BRCA 1 and BRCA 2 mutations other than breast and ovarian. Cancer, 121(2), 269–275. https://doi.org/10.1002/cncr.29041

Milne, R. L., & Antoniou, A. C. (2011). Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers. Annals of Oncology, 22(Suppl.1). https://doi.org/10.1093/annonc/mdq660

Mishra, M., Tiwari, S., & Gomes, A. v. (2017). Protein purification and analysis: next generation Western blotting techniques. Expert. Rev. Proteomics, 14(11), 1037–1053. https://doi.org/10.1080/14789450.2017.1388167

Mitchell, M. J., Jain, R. K., & Langer, R. (2017). Engineering and physical sciences in oncology: challenges and opportunities. Na.t Rev. Cancer, 17(11), 659–675. https://doi.org/10.1038/nrc.2017.83

Mitri, Z., Constantine, T., & O’Regan, R. (2012). The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemother. Res. Prac.t, 2012, 743193. https://doi.org/10.1155/2012/743193

Miyoshi, Y., Nagase, H., Ando, H., Horii, A., Ichii, S., Nakatsuru, S., Aoki, T., Miki, Y., Mori, T., & Nakamura, Y. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol. Genet., 1(4), 229–233. https://doi.org/10.1093/hmg/1.4.229

Molly Campbell. (2020). Missense, Nonsense and Frameshift Mutations: A Genetic Guide. Genomics Research.

Molnar, B., Toth, K., Bartak, B. K., & Tulassay, Z. (2015). Plasma methylated septin 9: a colorectal cancer screening marker. Expert. Rev. Mol. Diagn., 15(2), 171–184. https://doi.org/10.1586/14737159.2015.975212

Murphree, A. L., & Benedict, W. F. (1984). Retinoblastoma: clues to human oncogenesis. Science, 223(4640), 1028–1033. https://doi.org/10.1126/science.6320372

Nakagawa, H., Wardell, C. P., Furuta, M., Taniguchi, H., & Fujimoto, A. (2015). Cancer whole-genome sequencing: present and future. Oncogene, 34(49), 5943–5950. https://doi.org/10.1038/onc.2015.90

Naldini, L., Vigna, E., Narsimhan, R. P., Gaudino, G., Zarnegar, R., Michalopoulos, G. K., & Comoglio, P. M. (1991). Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene, 6(4), 501–504. https://www.ncbi.nlm.nih.gov/pubmed/1827664

Neville, A. M., & Cooper, E. H. (1976). Biochemical monitoring of cancer. A review. Ann. Clin. Biochem., 13(1), 283–305. https://doi.org/10.1177/000456327601300101

Nicolosi, P., Ledet, E., Yang, S., Michalski, S., Freschi, B., O’Leary, E., Esplin, E. D., Nussbaum, R. L., & Sartor, O. (2019). Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol., 5(4), 523–528. https://doi.org/10.1001/jamaoncol.2018.6760

Nordstrom-O’Brien, M., van der Luijt, R. B., van Rooijen, E., van den Ouweland, A. M., Majoor-Krakauer, D. F., Lolkema, M. P., van Brussel, A., Voest, E. E., & Giles, R. H. (2010). Genetic analysis of von Hippel-Lindau disease. Hum. Mutat., 31(5), 521–537. https://doi.org/10.1002/humu.21219

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl. J. Med., 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181

Oda, T., Tsuda, H., Scarpa, A., Sakamoto, M., & Hirohashi, S. (1992). p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res., 52(22), 6358–6364. https://www.ncbi.nlm.nih.gov/pubmed/1330291

Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2(1), a001008. https://doi.org/10.1101/cshperspect.a001008

Pramanik, V., Sarkar, B. N., Kar, M., Das, G., Malay, B. K., Sufia, K. K., Lakkakula, B. V., & Vadlamudi, R. R. (2011). A novel polymorphism in codon 25 of the KRAS gene associated with gallbladder carcinoma patients of the eastern part of India. Genet Test Mol. Biomarkers, 15(6), 431–434. https://doi.org/10.1089/gtmb.2010.0194

Puig-Butille, J. A., Escamez, M. J., Garcia-Garcia, F., Tell-Marti, G., Fabra, A., Martinez-Santamaria, L., Badenas, C., Aguilera, P., Pevida, M., Dopazo, J., del Rio, M., & Puig, S. (2014). Capturing the biological impact of CDKN2A and MC1R genes as an early predisposing event in melanoma and non melanoma skin cancer. Oncotarget., 5(6), 1439–1451. https://doi.org/10.18632/oncotarget.1444

Rabbani, B., Tekin, M., & Mahdieh, N. (2014). The promise of whole-exome sequencing in medical genetics. In Journal of Human Genetics, 59(1), 5–15. https://doi.org/10.1038/jhg.2013.114

Rajasekharan, S. K., & Raman, T. (2013). Ras and Ras mutations in cancer. In Central European Journal of Biology, 8(7), 609–624). https://doi.org/10.2478/s11535-013-0158-5

Rayess, H., Wang, M. B., & Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. Int. J. Cancer, 130(8), 1715–1725. https://doi.org/10.1002/ijc.27316

Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. In Genes and Cancer, 2(4), 466–474. https://doi.org/10.1177/1947601911408889

Ronaghi, M. (2003). Pyrosequencing for SNP genotyping. In Single Nucleotide Polymorphisms, pp. 189–195. Springer. https://doi.org/10.1385/1-59259-327-5:189

Samatar, A. A., & Poulikakos, P. I. (2014). Targeting RAS-ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov., 13(12), 928–942. https://doi.org/10.1038/nrd4281

Sampson, J. R., & Harris, P. C. (1994). The molecular genetics of tuberous sclerosis. Hum. Mol. Genet., 3 Spec No(suppl_1), 1477–1480. https://doi.org/10.1093/hmg/3.suppl_1.1477

Santin, A. D., Bellone, S., Gokden, M., Palmieri, M., Dunn, D., Agha, J., Roman, J. J., Hutchins, L., Pecorelli, S., O’Brien, T., Cannon, M. J., & Parham, G. P. (2002). Overexpression of HER-2/neu in uterine serous papillary cancer. Clin. Cancer Res., 8(5), 1271–1279. https://www.ncbi.nlm.nih.gov/pubmed/12006548

Schmidt, L., Duh, F. M., Chen, F., Kishida, T., Glenn, G., Choyke, P., Scherer, S. W., Zhuang, Z., Lubensky, I., Dean, M., Allikmets, R., Chidambaram, A., Bergerheim, U. R., Feltis, J. T., Casadevall, C., Zamarron, A., Bernues, M., Richard, S., Lips, C. J., & Zbar, B. (1997). Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet., 16(1), 68–73. https://doi.org/10.1038/ng0597-68

Schmidt, L. S., & Linehan, W. M. (2018). FLCN: The causative gene for Birt-Hogg-Dubé syndrome. In Gene, 640, 28–42. Elsevier B.V. https://doi.org/10.1016/j.gene.2017.09.044

Seng, T. J., Currey, N., Cooper, W. A., Lee, C. S., Chan, C., Horvath, L., Sutherland, R. L., Kennedy, C., McCaughan, B., & Kohonen-Corish, M. R. (2008). DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Br. J. Cancer, 99(2), 375–382. https://doi.org/10.1038/sj.bjc.6604452

Shao, Z., & Robbins, P. D. (1995). Differential regulation of E2F and Sp1-mediated transcription by G1 cyclins. Oncogene, 10(2), 221–228. https://www.ncbi.nlm.nih.gov/pubmed/7838522

Sherr, C. J., & McCormick, F. (2002). The RB and p53 pathways in cancer. Cancer Cell, 2(2), 103–112. https://doi.org/10.1016/s1535-6108(02)00102-2

Slamon, D. J. (1987). Proto-oncogenes and human cancers. Mass Medical Soc. http://dx.doi.org/10.1056/NEJM198710083171509

Sobrino, B., Brion, M., & Carracedo, A. (2005). SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci. Int., 154(2–3), 181–194. https://doi.org/10.1016/j.forsciint.2004.10.020

Spirio, L., Olschwang, S., Groden, J., Robertson, M., Samowitz, W., Joslyn, G., Gelbert, L., Thliveris, A., Carlson, M., & Otterud, B. (1993). Alleles of the APC gene: an attenuated form of familial polyposis. Cell, 75(5), 951–957. https://doi.org/10.1016/0092-8674(93)90538-2

Sun, D., Wang, M., & Li, A. (2018). A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(3), 841-850. https://doi.org/10.1109/tcbb.2018.2806438

Syvanen, A. C. (1999). From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat, 13(1), 1–10. https://doi.org/10.1002/(SICI)1098-1004(1999)13:1<1::AID-HUMU1>3.0.CO;2-I

Tada, M., Omata, M., & Ohto, M. (1991). Clinical application of ras gene mutation for diagnosis of pancreatic adenocarcinoma. Gastroenterology, 100(1), 233–238. https://doi.org/10.1016/0016-5085(91)90606-l

Tai, W., Mahato, R., & Cheng, K. (2010). The role of HER2 in cancer therapy and targeted drug delivery. J. Control. Release, 146(3), 264–275. https://doi.org/10.1016/j.jconrel.2010.04.009

Tapia, T., Smalley, S. v, Kohen, P., Munoz, A., Solis, L. M., Corvalan, A., Faundez, P., Devoto, L., Camus, M., Alvarez, M., & Carvallo, P. (2008). Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors. Epigenetics, 3(3), 157–163. https://doi.org/10.4161/epi.3.3.6387

Tawfik, H. M., El-Maqsoud, N. M., Hak, B. H., & El-Sherbiny, Y. M. (2011). Head and neck squamous cell carcinoma: mismatch repair immunohistochemistry and promoter hypermethylation of hMLH1 gene. Am. J. Otolaryngol., 32(6), 528–536. https://doi.org/10.1016/j.amjoto.2010.11.005

Tokhtaeva, E., Capri, J., Marcus, E. A., Whitelegge, J. P., Khuzakhmetova, V., Bukharaeva, E., Deiss-Yehiely, N., Dada, L. A., Sachs, G., Fernandez-Salas, E., & Vagin, O. (2015). Septin dynamics are essential for exocytosis. J. Biol. Chem., 290(9), 5280–5297. https://doi.org/10.1074/jbc.M114.616201

Tomasz M. Beer. (2021). Examining Developments in Multicancer Early Detection: Highlights of New Clinical Data from Recent Conferences. www.ajmc.com/ce

Toth, K., Galamb, O., Spisak, S., Wichmann, B., Sipos, F., Valcz, G., Leiszter, K., Molnar, B., & Tulassay, Z. (2011). The influence of methylated septin 9 gene on RNA and protein level in colorectal cancer. Pathol. Oncol. Res., 17(3), 503–509. https://doi.org/10.1007/s12253-010-9338-7

Truninger, K., Menigatti, M., Luz, J., Russell, A., Haider, R., Gebbers, J. O., Bannwart, F., Yurtsever, H., Neuweiler, J., Riehle, H. M., Cattaruzza, M. S., Heinimann, K., Schar, P., Jiricny, J., & Marra, G. (2005). Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology, 128(5), 1160–1171. https://doi.org/10.1053/j.gastro.2005.01.056

Uehara, H., Miyamoto, M., Kato, K., Cho, Y., Kurokawa, T., Murakami, S., Fukunaga, A., Ebihara, Y., Kaneko, H., Hashimoto, H., Murakami, Y., Shichinohe, T., Kawarada, Y., Itoh, T., Okushiba, S., Kondo, S., & Katoh, H. (2005). Deficiency of hMLH1 and hMSH2 expression is a poor prognostic factor in esophageal squamous cell carcinoma. J. Surg. Oncol., 92(2), 109–115. https://doi.org/10.1002/jso.20332

van Boxtel, R., Kuiper, R. v, Toonen, P. W., van Heesch, S., Hermsen, R., de Bruin, A., & Cuppen, E. (2011). Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am. J. Pathol., 179(4), 1616–1622. https://doi.org/10.1016/j.ajpath.2011.06.036

Venkitaraman, A. R. (2009). Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu. Rev. Pathol, 4, 461–487.

https://doi.org/10.1146/annurev.pathol.3.121806.151422

Victor V, & Stephen C. (2019). Cell-free DNA for assessing and/or treating cancer.

Vogelstein, & Kinzler. (2019). Methods and materials for assessing and treating cancer.

Volpi, E. v, & Bridger, J. M. (2008). FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques, 45(4), 385–386, 388, 390. https://doi.org/10.2144/000112811

Wagner, A., Barrows, A., Wijnen, J. T., van der Klift, H., Franken, P. F., Verkuijlen, P., Nakagawa, H., Geugien, M., Jaghmohan-Changur, S., Breukel, C., Meijers-Heijboer, H., Morreau, H., van Puijenbroek, M., Burn, J., Coronel, S., Kinarski, Y., Okimoto, R., Watson, P., Lynch, J. F., & Fodde, R. (2003). Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am. J. Hum. Genet., 72(5), 1088–1100. https://doi.org/10.1086/373963

Waldmann, T. A., & McIntire, K. R. (1974). The use of a radioimmunoassay for alpha-fetoprotein in the diagnosis of malignancy. Cancer, 34(4 Suppl), 1510-1515.

Wang, Z., Sun, K., Jing, C., Cao, H., Ma, R., & Wu, J. (2019). Comparison of droplet digital PCR and direct Sanger sequencing for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma. J. Clin. Lab. Anal., 33(6), e22902. https://doi.org/10.1002/jcla.22902

Wasserkort, R., Kalmar, A., Valcz, G., Spisak, S., Krispin, M., Toth, K., Tulassay, Z., Sledziewski, A. Z., & Molnar, B. (2013). Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer, 13, 398. https://doi.org/10.1186/1471-2407-13-398

Wise, J. F., & Lawrence, M. S. (2019). Huge whole-genome study of human metastatic cancers. Nature, 575(7781), 60–61. https://doi.org/10.1038/d41586-019-03123-0

Witkiewicz, A. K., & Knudsen, E. S. (2014). Retinoblastoma tumor suppressor pathway in breast cancer: Prognosis, precision medicine, and therapeutic interventions. In Breast Cancer Research, 16(2), 207. https://doi.org/10.1186/bcr3652

Xia, B., Sheng, Q., Nakanishi, K., Ohashi, A., Wu, J., Christ, N., Liu, X., Jasin, M., Couch, F. J., & Livingston, D. M. (2006). Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell, 22(6), 719–729.

https://doi.org/10.1016/j.molcel.2006.05.022

Yano, T., Ochiai, A., Doi, T., Hashizume, K., Nakanishi, M., Ouchi, K., Tanaka, Y., & Ohtsu, A. (2004). Expression of HER2 in gastric cancer: Comparison between protein expression and gene amplification using a new commercial kit. Journal of Clinical Oncology, 22(14_suppl), 4053–4053. https://doi.org/10.1200/jco.2004.22.90140.4053

Zhang, Y., Xia, M., Jin, K., Wang, S., Wei, H., Fan, C., Wu, Y., Li, X., Li, X., Li, G., Zeng, Z., & Xiong, W. (2018). Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer, 17(1), 45. https://doi.org/10.1186/s12943-018-0796-y

Ziegler, A., Leffell, D. J., Kunala, S., Sharma, H. W., Gailani, M., Simon, J. A., Halperin, A. J., Baden, H. P., Shapiro, P. E., & Bale, A. E. (1993). Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl. Acad. Sci. USA, 90(9), 4216–4220. https://doi.org/10.1073/pnas.90.9.4216.

Published
2023-04-30
How to Cite
Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. International Journal of Experimental Research and Review, 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015
Section
Articles