Survey on performance parameters of planar microwave antennas
DOI:
https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.017Keywords:
Antenna, Planar device, Microwave, Polarization, Electromagnetic field, High-frequency applicationsAbstract
Planar antennas, which include microstrip antennas and printed circuit board antennas, are used in telecommunications. This study aims to provide an overview of microstrip antennas for diverse applications. Microstrip patch antenna design is a new study topic that has been established for usage in 5th-generation communication applications. An antenna is a group of connected devices that serve as a single antenna to broadcast or receive radio waves. Antennas come in a variety of designs and sizes. The paper discusses several printed microstrip antenna designs, such as rectangular to circular, broadband, dual-band, millimeter-wave and microstrip arrays. The microstrip patch is an antenna layout that is lightweight, low-profile, and results-oriented. Microstrip patch antennas may be employed in various 6G communication system applications in the future. This paper examines antenna geometric structures, antenna analysis methodologies, antenna dimensions and many different types of antennas. It will also go over the substrate materials, loss tangent, thickness, return loss, bandwidth, voltage-standing-wave-ratio (VSWR), gain, and directivity so that an optimized antenna can be designed and fabricated having excellent characteristics for use in modern applications by the promising academic researchers in the near future.
References
Alibakhshikenari, M., Virdee, B. S., Shukla, P., Parchin, N. O., Azpilicueta, L., See, C. H., Abd-Alhameed, R. A., Falcone, F., Huynen, I., Denidni, T. A., & Limiti, E. (2020). Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection. IEEE Access, 8, 174667 - 174678. https://doi.org/10.1109/ACCESS.2020.3025672
An, Z., & He, M. (2020). A simple planar antenna for sub-6 GHz applications in 5G mobile terminals. Applied Computational Electromagnetics Society Journal, 35(1),10-15.
Balanis, C. A. (1992). Antenna Theory: A Review. Proceedings of the IEEE, 80(1), 7-23. https://doi.org/10.1109/5.119564
Bansal, A., & Gupta, R. (2020). A review on microstrip patch antenna and feeding techniques. International Journal of Information Technology, 12(1), 1-6. https://doi.org/10.1007/s41870-018-0121-4
Behera, K. R., & Salkuti, S. R. (2022). Microstrip antenna optimization using evolutionary algorithms. IAES International Journal of Artificial Intelligence, 11(3), 836-842. https://doi.org/10.11591/ijai.v11.i3.pp836-842
Cui, Y. H., Li, R. L., & Fu, H. Z. (2014). A broadband dual-polarized planar antenna for 2G/3G/LTE base stations. IEEE Transactions on Antennas and Propagation, 62(9), 4836-4840. https://doi.org/10.1109/TAP.2014.2330596
El Gharbi, M., Fernández-García, R., Ahyoud, S., & Gil, I. (2020). A review of flexible wearable antenna sensors: Design, fabrication methods, and applications. In Materials, 13(17), 3781. https://doi.org/10.3390/MA13173781
Esmail, B. A. F., Koziel, S., & Szczepanski, S. (2022). Overview of Planar Antenna Loading Metamaterials for Gain Performance Enhancement: The Two Decades of Progress. IEEE Access, 10, 27381-27403. https://doi.org/10.1109/ACCESS.2022.3157634
Gao, S. P., Wang, B., Zhao, H., Zhao, W. J., & Png, C. E. (2015). Installed Radiation Pattern of Patch Antennas: Prediction based on a novel equivalent model. IEEE Antennas and Propagation Magazine, 57(3), 81-94. https://doi.org/10.1109/MAP.2015.2437275
Godaymi Al-Tumah, W. A., Shaaban, R. M., & Duffy, A. P. (2022). Design, simulation, and fabrication of a double annular ring microstrip antenna based on gaps with multiband feature. Engineering Science and Technology, an International Journal, 3(3), 10. https://doi.org/10.1016/j.jestch.2021.06.013
Hassan, E., Noreland, D., Augustine, R., Wadbro, E., & Berggren, M. (2015). Topology Optimization of Planar Antennas for Wideband Near-Field Coupling. IEEE Transactions on Antennas and Propagation, 18, 1-6. https://doi.org/10.1109/TAP.2015.2449894
Hossain, A., Islam, M. T., Islam, M. T., Chowdhury, M. E. H., Rmili, H., & Samsuzzaman, M. (2020). A planar ultrawideband patch antenna array for microwave breast tumor detection. Materials, 13(21), 4918. https://doi.org/10.3390/ma13214918
Hossain, M. M., Alam, M. J., & Latif, S. I. (2022). Orthogonal Printed Microstrip Antenna Arrays for 5G Millimeter-Wave Applications. Micromachines, 13(1), 53. https://doi.org/10.3390/mi13010053
Iftissane, M., Bri, S., & Mamouhi, A. (2011). Design and modelling of broad band patch antenna. Modelling, Measurement and Control A, 11(2), 16-80.
Islam, M. T., Ullah, M. A., Alam, T., Singh, M. J., & Cho, M. (2018). Microwave imaging sensor using low profile modified stacked type planar inverted F antenna. Sensors (Switzerland), 18(9), 2949. https://doi.org/10.3390/s18092949
Iwasaki, H., & Chiba, N. (1999). Circularly polarised back-to-back microstrip antenna with an omnidirectional pattern. IEE Proceedings: Microwaves, Antennas and Propagation, 146(4), 277-281. https://doi.org/10.1049/ip-map:19990568
Khan, M. A., Rafique, U., Savci, H. Ş., Nordin, A. N., Kiani, S. H., & Abbas, S. M. (2022). Ultra-Wideband Pentagonal Fractal Antenna with Stable Radiation Characteristics for Microwave Imaging Applications. Electronics (Switzerland), 11(13), 2061. https://doi.org/10.3390/electronics11132061
Kuo, Y. L., & Wong, K. L. (2001). A circularly polarized microstrip antenna with a photonic bandgap ground plane. Asia-Pacific Microwave Conference Proceedings, APMC, 3, 17-27. https://doi.org/10.1109/apmc.2001.985456
Lo, Y. T., Solomon, D., & Richards, W. F. (1979). Theory and Experiment on Microstrip Antennas. IEEE Transactions on Antennas and Propagation, 27, 137-145. https://doi.org/10.1109/TAP.1979.1142057
Malik, P. K. (2021). Planar Antennas: Design and Applications. In Planar Antennas: Design and Applications, 1, 364. https://doi.org/10.1201/9781003187325
Martin-Anton, S., & Segovia-Vargas, D. (2020). Fully Planar Dual-Polarized Broadband Antenna for 3G, 4G and Sub 6-GHz 5G Base Stations. IEEE Access, 1, 91940-91947. https://doi.org/10.1109/ACCESS.2020.2994382
Matta, L., Sharma, M., Kaur, P., & Sharma, B. (2022). Ultra Wideband Planar Monopole Antenna with Pair of C-Shaped Slots and T-Shaped Sleeve for Microwave Systems. ECS Transactions, 107, 6523. https://doi.org/10.1149/10701.6523ecst
Milligan, T. A. (2005). Modern Antenna Design: Second Edition. In Modern Antenna Design: Second Edition, 614. https://doi.org/10.1002/0471720615
Park, S., & Jung, K. Y. (2022). Novel Compact UWB Planar Monopole Antenna Using a Ribbon-Shaped Slot. IEEE Access, 10, 61951-61959.https://doi.org/10.1109/ACCESS.2022.3182443
Ramesh, M., & Yip, K. B. (2003). Design formula for inset fed microstrip patch antenna. Journal of Microwaves and Optoelectronics, 134, 1984.
Rana, M. S., & Smieee, M. M. R. (2022). Design and analysis of microstrip patch antenna for 5G wireless communication systems. Bulletin of Electrical Engineering and Informatics, 11(6), 3329-3337. https://doi.org/10.11591/eei.v11i6.3955
Rana, S., Thakur, A., Saini, H. S., Kumar, R., & Kumar, N. (2016). A wideband planar inverted F antenna for wireless communication devices. Proceedings - 2016 International Conference on Advances in Computing, Communication and Automation, ICACCA, 2, 875. https://doi.org/10.1109/ICACCA.2016.7578875
Ranaweera, C., Monti, P., Skubic, B., Wong, E., Furdek, M., Wosinska, L., Machuca, C. M., Nirmalathas, A., & Lim, C. (2019). Optical Transport Network Design for 5G Fixed Wireless Access. Journal of Lightwave Technology, 37(16), 3893–3901. https://doi.org/10.1109/JLT.2019.2921378
Rashid, Z. mohammed, & M. Jassim Al-Hindawi, A. (2019). Design of Adaptive Planar Microstrip Patch Array Operating at 28 GHz for 5G Smart Mobile System. Kurdistan Journal of Applied Research, 4(2), 158-172. https://doi.org/10.24017/science.2019.2.16
Ravipati, C. B., & Shafai, L. (1999). A wide bandwidth circularly polarized microstrip antenna using a single feed. IEEE Antennas and Propagation Society International Symposium: Wireless Technologies and Information Networks, APS 1999 - Held in Conjunction with USNC/URSI National Radio Science Meeting, (Cat. No. 99CH37010), 5639 https://doi.org/10.1109/APS.1999.789126
Roy, A. A., Môm, J. M., & Igwue, G. A. (2013). Enhancing the Bandwidth of a Microstrip Patch Antenna using Slots Shaped Patch. American Journal of Engineering Research (AJER), 2(9), 23-30. https://doi.org 10.13140/RG.2.1.2479.7044.
Sasaki, K., Monnai, Y., Saijo, S., Fujita, R., Watanabe, H., Ishi-Hayase, J., Itoh, K. M., & Abe, E. (2016). Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Review of Scientific Instruments, 14, 1-6. https://doi.org/10.1063/1.4952418
Simba, A. Y., Yamamoto, M., Nojima, T., & Itoh, K. (2007). Circularly polarised proximity-fed microstrip antenna with polarisation switching ability. IET Microwaves, Antennas and Propagation, 1(3), 658 – 665. https://doi.org/10.1049/iet-map:20050273
Sun, Y. X., Leung, K. W., & Lu, K. (2021). Compact Dual Microwave/Millimeter-Wave Planar Shared-Aperture Antenna for Vehicle-to-Vehicle/5G Communications. IEEE Transactions on Vehicular Technology, 70(5), 5071-5076. https://doi.org/10.1109/TVT.2021.3070353
Volakis, J. L. (2012). Antenna Engineering Handbook: Introduction and Fundamentals, Fourth Edition. In McGraw-Hill Companies, 612.