A review of soil pollution from LDPE mulching films and the consequences of the substitute biodegradable plastic on soil health

Authors

DOI:

https://doi.org/10.52756/ijerr.2023.v32.002

Keywords:

Biodegradable plastic mulch, ecotoxicity assessment, microplastic pollution, plastic mulch, Soil health, Soil microorganisms

Abstract

The plastic film mulching system has a significant role in increasing crop grain yields by changing the microenvironment of the plant. On the other hand, plastic mulching materials pollute the land and water because they are not degraded or disposed of properly. Biodegradable plastic mulches (BPM) may be used as a substitute for conventional low-density polyethylene (LDPE) to protect soil health. In this review, the effect of micro(nano)plastics on soil health and function has been discussed in light of their distribution in soil, changes in soil biochemistry, interactions between microplastics with soil microbes and plants, and their growth patterns. The nano-plastics are now incorporated into the food chain from the soil through plants and finally harm the whole ecosystem, including humans. The use of BPM has been practiced recently, but only 1% of the world’s total plastic production is from biodegradable materials. In the second part of the review, the confusing terms "bio-based" and "biodegradable" were clarified based on their polymeric constituents. The physical parameters of different constituent materials for mulching purposes and their capability for sustainable solarization have been discussed. The effect of biodegradable mulches on soil health and other ecotoxic effects on plants, soil microorganisms, and other soil dwellers like Daphnia magna, Vibrio fischeri bacteria, green algae, slime mould, protozoa, invertebrates like earthworms, and common water fleas have been focused on in this review. In conclusion, the use of BPM for mulching purposes was reported to improve crop quality and yield and reduce weed growth in comparison to naked soil. The recent short-term studies ensured that mulches stayed unbroken throughout the growing season. But simultaneously, the biodegradable mulches affect soil health and have a substantial impact on physical parameters such as soil pH, electrical conductivity, aggregate stability, infiltration, nitrate-N, exchangeable potassium, etc. Therefore, a lot of long-term research is required for the use of BPM as a substitute for conventional LDPE as a mulching film in the agricultural field.

References

Akhir, M. A. M., & Mustapha, M. (2022). Formulation of biodegradable plastic mulch film for agriculture crop protection: a review. Polymer Reviews, 62(4), 890-918. https://doi.org/10.1080/15583724.2022.2041031

Al Hosni, A. S., Pittman, J. K., & Robson, G. D. (2019). Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 97, 105-114. https://doi.org/10.1016/j.wasman.2019.07.042

Allison, S. D., & Jastrow, J. D. (2006). Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biology and Biochemistry, 38(11), 3245-3256. https://doi.org/10.1016/j.soilbio.2006.04.011

Al-Shammary, A. A. G., Al-Sadoon, J. N. A., & Lahmod, N. R. (2016). Influence of the soil solarization management and fertilizer on soil temperature under different soil tillage systems. Journal of Agricultural Science, 8(2), 98. https://dx.doi.org/10.5539/jas.v8n2p98

Ambrogi, V., Carfagna, C., Cerruti, P., & Marturano, V. (2017). Additives in polymers. In: Modification of polymer properties. Jasso-Gastinel, C. F., &Kenny, J.M. (eds.). William Andrew Publishing, Amsterdam, Boston, Heidelberg, London and New York, pp. 87-108. https://doi.org/10.1016/B978-0-323-44353-1.00004-X

Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C., & Leong, K. H. (2011). An overview of degradable and biodegradable polyolefins. Progress in Polymer Science, 36(8), 1015-1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002

Ardisson, G.B., Tosin, M., Barbale, M., & Degli-Innocenti, F., 2014. Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Front. Microbiol., 5, 1–7. https://doi.org/10.3389/fmicb.2014.00710

Bandopadhyay, S., Martin-Closas, L., Pelacho, A. M., & DeBruyn, J. M. (2018). Biodegradable plastic mulch films: impacts on soil microbial communities and ecosystem functions. Frontiers in microbiology, 9, 819.https://doi.org/10.3389/fmicb.2018.00819

Bandopadhyay, S., Sintim, H. Y., & DeBruyn, J. M. (2020). Effects of biodegradable plastic film mulching on soil microbial communities in two agroecosystems. PeerJ., 8, e9015. https://doi.org/10.7717/peerj.9015

Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T., & Roger-Estrade, J. (2015). Earthworm services for cropping systems. A review. Agronomy for Sustainable Development, 35, 553-567. https://doi.org/10.1007/s13593-014-0269-7

Birthisel, S. K., Smith, G. A., Mallory, G. M., Hao, J., & Gallandt, E. R. (2019). Effects of field and greenhouse solarization on soil microbiota and weed seeds in the northeast USA. Organic Farming, 5(1), 66-78. https://doi.org/10.12924/of2019.05010066

Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science &Technology, 53(19), 11496-11506. https://doi.org/10.1021/acs.est.9b03304

Brault, D., Stewart, K. A., & Jenni, S. (2002). Growth, development, and yield of head lettuce cultivated on paper and polyethylene mulch. Hort. Science, 37(1), 92-94. https://doi.org/10.21273/HORTSCI.37.1.92

Brown, R.W., Chadwick, D.R., Zang, H., Graf, M., Liu, X., Wang, K., Greenfield, L.M., & Jones, D.L. (2023). Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize. Journal of Hazardous Materials, 441, 129959. https://doi.org/10.1016/j.jhazmat.2022.129959

Burford, T., Rieg, W., & Madbouly, S. (2021). Biodegradable poly (butylene adipate-co-terephthalate)(PBAT). Physical Sciences Reviews, 021, 000010151520200078. https://doi.org/10.1515/psr-2020-0078

Butbunchu, N., & Pathom-Aree, W. (2019). Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Frontiers in Microbiology, 10, 2834. https://doi.org/10.3389/fmicb.2019.02834

Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387-395. https://doi.org/10.1016/j.envpol.2018.05.008

Chellemi, D. O., Olson, S. M., Mitchell, D. J., Secker, I., & McSorley, R. (1997). Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Phytopathology, 87(3), 250-258. https://doi.org/10.1094/PHYTO.1997.87.3.250

Cirujeda, A., Aibar, J., Anzalone, Á., Martín-Closas, L., Meco, R., Moreno, M.M., Pardo, A., Pelacho, A.M., Rojo, F., Royo-Esnal, A., & Zaragoza, C. (2012). Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agronomy for Sustainable Development, 32, 889-897. https://doi.org/10.1007/s13593-012-0084-y

Coltelli, M. B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly (lactic acid) properties as a consequence of poly (butylene adipate‐co‐terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. https://doi.org/10.1002/app.28512

Cowan, J. S., Miles, C. A., Andrews, P. K., & Inglis, D. A. (2014). Biodegradable mulch performed comparably to polyethylene in high-tunnel tomato (Solanum lycopersicum L.) production. Journal of the Science of Food and Agriculture, 94(9), 1854-1864. https://doi.org/10.1002/jsfa.6504

de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A.S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science &Technology, 53(10), 6044-6052. https://doi.org/10.1021/acs.est.9b01339

de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M. C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science &Technology, 52 (17), 9656-9665. https://doi.org/10.1021/acs.est.8b02212

DeForest, J. L., Zak, D. R., Pregitzer, K. S., & Burton, A. J. (2004). Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal, 68(1), 132-138. https://doi.org/10.2136/sssaj2004.1320

Derraik, J. G. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), 842-852. https://doi.org/10.1016/S0025-326X(02)00220-5

Di Mola, I., Ventorino, V., Cozzolino, E., Ottaiano, L., Romano, I., Duri, L.G., Pepe, O., & Mori, M. (2021). Biodegradable mulching vs traditional polyethylene film for sustainable solarization: Chemical properties and microbial community response to soil management. Applied Soil Ecology, 163, 103921. https://doi.org/10.1016/j.apsoil.2021.103921

Du, Q. Z., Fu, X. W., & Xia, H. L. (2009). Uptake of di-(2-ethylhexyl) phthalate from plastic mulch film by vegetable plants. Food Additives and Contaminants, 26(9), 1325-1329. https://doi.org/10.1080/02652030903081952

Emadian, S. M., Onay, T. T., & Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526-536. https://doi.org/10.1016/j.wasman.2016.10.006

EN 17033, 2018. Plastics–Biodegradable Mulch Films for Use in Agriculture and Horticulture– Requirements and Test Methods. European Standard, European Committee for Standardization, Brussels, Belgium.globalspec.com/std/10275332/EN%2017033

Esmaeili, A., Pourbabaee, A. A., Alikhani, H. A., Shabani, F., & Esmaeili, E. (2013). Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. Plos One, 8(9), e71720. https://doi.org/10.1371/journal.pone.0071720

European Commission, Horizon 2020. Accessed on February 2023. https://ec.europa.eu/info/research-and-innovation/research-area/environment/plastics-circular-economy_en.

Free, C. M., Jensen, O. P., Mason, S. A., Eriksen, M., Williamson, N. J., & Boldgiv, B. (2014). High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, 85(1), 156-163. https://doi.org/10.1016/j.marpolbul.2014.06.001

Fritz, J., Sandhofer, M., Stacher, C., & Braun, R. (2003). Strategies for detecting ecotoxicological effects of biodegradable polymers in agricultural applications. Weinheim: WILEY‐VCH Verlag. In: Macromolecular Symposia, 197(1),397-410. https://doi.org/10.1002/masy.200350734

Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237, 124482. https://doi.org/10.1016/j.chemosphere.2019.124482

Ghimire, S., Flury, M., Scheenstra, E. J., & Miles, C. A. (2020). Sampling and degradation of biodegradable plastic and paper mulches in field after tillage incorporation. Science of the Total Environment, 703, 135577. https://doi.org/10.21273/hortsci12630-17

Ghosh, A. (2017). Phthalate puzzle. Resonance, 22, 691-696. https://doi.org/10.1007/s12045-017-0512z

Giorgetti, L., Spanò, C., Muccifora, S., Bottega, S., Barbieri, F., Bellani, L., & Castiglione, M. R. (2020). Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry, 149, 170-177. https://doi.org/10.1016/j.plaphy.2020.02.014

Guo, J. J., Huang, X. P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Mo, C.H., Cai Q.Y., & Wong, M. H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137, 105263. https://doi.org/10.1016/j.envint.2019.105263

Haapala, T., Palonen, P., Tamminen, A., & Ahokas, J. (2015). Effects of different paper mulches on soil temperature and yield of cucumber (Cucumis sativus L.) in the temperate zone. Agricultural and Food Science, 24(1), 52-58. https://doi.org/10.23986/afsci.47220

Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 58(1), 50-62. https://doi.org/10.1002/anie.201805766

Hayes, D. G., Wadsworth, L. C., Sintim, H. Y., Flury, M., English, M., Schaeffer, S., & Saxton, A. M. (2017). Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polymer Testing, 62, 454-467. https://doi.org/10.1016/j.polymertesting.2017.07.027

Hayes, D.G., Anunciado, M.B., DeBruyn, J.M., Bandopadhyay, S., Schaeffer, S., English, M., Ghimire, S., Miles, C., Flury, M., & Sintim, H. Y. (2019). Biodegradable plastic mulch films for sustainable specialty crop production. Polymers for Agri-food Applications, pp. 183-213. https://doi.org/10.1007/978-3-030-19416-1_11

He, P., Chen, L., Shao, L., Zhang, H., & Lü, F. (2019). Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate. Water Research, 159, 38-45. https://doi.org/10.1016/j.watres.2019.04.060

Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., & Qin, X. (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254, 112983. https://doi.org/10.1016/j.envpol.2019.112983

Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. D. L. A., Sanchez del Cid, L., Chi, C., Escalona Segura, G., Gertsen, H., Salánki, T., van der Ploeg, M., Koelmans, A. A., & Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1), 14071. https://doi.org/10.1038/s41598-017-14588-2

Iapichino, G., Mustazza, G., Sabatino, L., & D'Anna, F. (2012). Polyethylene and biodegradable starch-based mulching films positively affect winter melon production in Sicily. In International CIPA Conference 2012 on Plasticulture for a Green Planet, 1015, 225-231. https://doi.org/10.17660/ActaHortic.2014.1015.25

Jayasekara, R., Harding, I., Bowater, I., & Lonergan, G. (2005). Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. Journal of Polymers and the Environment, 13, 231-251. https://doi.org/10.1007/s10924-005-4758-2

Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831-838. https://doi.org/10.1016/j.envpol.2019.04.055

Judy, J. D., Williams, M., Gregg, A., Oliver, D., Kumar, A., Kookana, R., & Kirby, J. K. (2019). Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 252, 522-531. https://doi.org/10.1016/j.envpol.2019.05.027

Kapanen, A., Schettini, E., Vox, G., & Itävaara, M. (2008). Performance and environmental impact of biodegradable films in agriculture: a field study on protected cultivation. Journal of Polymers and the Environment, 16, 109-122. https://doi.org/10.1007/s10924-008-0091-x

Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development, 32, 501-529. https://doi.org/10.1007/s13593-011-0068-3

Kirstein, I. V., Wichels, A., Gullans, E., Krohne, G., & Gerdts, G. (2019). The plastisphere–uncovering tightly attached plastic “specific” microorganisms. PLoS One, 14(4), e0215859. https://doi.org/10.1371/journal.pone.0215859

Koitabashi, M., Noguchi, M.T., Sameshima-Yamashita, Y., Hiradate, S., Suzuki, K., Yoshida, S., Watanabe, T., Shinozaki, Y., Tsushima, S., & Kitamoto, H. K. (2012). Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants. AMB Express, 2(1), 1-10. https://doi.org/10.1186/2191-0855-2-40

Kong, X., Jin, D., Jin, S., Wang, Z., Yin, H., Xu, M., & Deng, Y. (2018). Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. Journal of Hazardous Materials, 353, 142-150. https://doi.org/10.1016/j.jhazmat.2018.04.015

Kong, X., Jin, D., Wang, X., Zhang, F., Duan, G., Liu, H., Jia, M., & Deng, Y. (2019). Dibutyl phthalate contamination remolded the fungal community in agro-environmental system. Chemosphere, 215, 189-198. https://doi.org/10.1016/j.chemosphere.2018.10.020

Künkel, A., Becker, J., Börger, L., Hamprecht, J., Koltzenburg, S., Loos, R., Schick, M.B., Schlegel, K., Sinkel, C., Skupin, G., & Yamamoto, M., 2016. Polymers, biodegradable. In: Ley, C. (Ed.), Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Germany, pp. 1–29. https://doi.org/10.1002/14356007.n21_n01.pub2

Kyrikou, I., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: a critical review. Journal of Polymers and the Environment, 15, 125-150. https://doi.org/10.1007/s10924-007-0053-8

Lamont, W. J. (2005). Plastics: Modifying the microclimate for the production of vegetable crops. Hort Technology, 15(3), 477-481. https://doi.org/10.21273/HORTTECH.15.3.0477

Li, C., Moore-Kucera, J., Lee, J., Corbin, A., Brodhagen, M., Miles, C., & Inglis, D. (2014). Effects of biodegradable mulch on soil quality. Applied Soil Ecology, 79, 59-69. https://doi.org/10.1016/j.apsoil.2014.02.012

Li, K., Jia, W., Xu, L., Zhang, M., & Huang, Y. (2023). The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. Journal of Hazardous Materials, 442, 130011.

Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J., Yin, N., Yang, J., Tu, C., & Zhang, Y. (2020). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929-937. https://doi.org/10.1038/s41893-020-0567-9

Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., Su, L., & Liu, W. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials, 385, 121620. https://doi.org/10.1016/j.jhazmat.2019.121620

Liling, G., Di, Z., Jiachao, X., Xin, G., Xiaoting, F., & Qing, Z. (2016). Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydrate Polymers, 136, 259-265. https://doi.org/10.1016/j.carbpol.2015.09.034

Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C.J., & Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907-917. https://doi.org/10.1016/j.chemosphere.2017.07.064

Luyt, A. S., & Malik, S. S. (2019). Can biodegradable plastics solve plastic solid waste accumulation? William Andrew Publishing. In Plastics to Energy, pp. 403-423. https://doi.org/10.1016/B978-0-12-813140-4.00016-9

Ma, T., Zhou, W., Chen, L. K., Wu, L., Christie, P., Zhang, H., & Luo, Y. (2017). Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels. PLoS One, 12(3), e0173957. https://doi.org/10.1371/journal.pone.0173957

Ma, X., Jian, R., Chang, P. R., & Yu, J. (2008). Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacro Molecules, 9(11), 3314-3320. https://doi.org/10.1021/bm800987c

Martin-Closas, L., Botet, R., & Pelacho, A. M. (2014). An in vitro crop plant ecotoxicity test for agricultural bioplastic constituents. Polymer Degradation and Stability, 108, 250-256. https://doi.org/10.1016/j.polymdegradstab.2014.03.037

Masui, A., Ikawa, S., Fujiwara, N., & Hirai, H. (2011). Influence for soil environment by continuing use of biodegradable plastic. Journal of Polymers and the Environment, 19, 622-627.https://doi.org/10.1007/s10924-011-0314-4

Mazzon, M., Gioacchini, P., Montecchio, D., Rapisarda, S., Ciavatta, C., & Marzadori, C. (2022). Biodegradable plastics: Effects on functionality and fertility of two different soils. Applied Soil Ecology, 169, 104216.

McGovern, R. J., McSorley, R., & Bell, M. L. (2002). Reduction of landscape pathogens in Florida by soil solarization. Plant Disease, 86(12), 1388-1395. https://doi.org/10.1094/PDIS.2002.86.12.1388

Meng, K., Teng, Y., Ren, W., Wang, B., & Geissen, V. (2023). Degradation of commercial biodegradable plastics and temporal dynamics of associated bacterial communities in soils: A microcosm study. Science of The Total Environment, 865, 161207.

Miles, C., DeVetter, L., Ghimire, S., & Hayes, D. G. (2017). Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. Hort. Science, 52(1), 10-15. https://doi.org/10.21273/hortsci11249-16

Moreno, M. M., & Moreno, A. (2008). Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Scientia Horticulturae, 116(3), 256-263. https://doi.org/10.1016/j.scienta.2008.01.007

Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & Abdul Ghani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Current Research in Green and Sustainable Chemistry, 100273. https://doi.org/10.1016/j.crgsc.2022.100273

Muroi, F., Tachibana, Y., Kobayashi, Y., Sakurai, T., & Kasuya, K. I. (2016). Influences of poly (butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polymer Degradation and Stability, 129, 338-346. https://doi.org/10.1016/j.polymdegradstab.2016.05.018

Naveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., Ferré, T.P., & de Jonge, L. W. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44-55. https://doi.org/10.1016/j.apsoil.2016.03.004

Nawaz, A., Hasan, F., & Shah, A. A. (2015). Degradation of poly (ɛ-caprolactone) (PCL) by a newly isolated Brevundimonas sp. strain MRL-AN1 from soil. FEMS Microbiology Letters, 362(1), 1-7. https://doi.org/10.1093/femsle/fnu004

Ng, E. L., Lwanga, E. H., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377-1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

Oka, Y., Shapira, N., & Fine, P. (2007). Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Protection, 26(10), 1556-1565. https://doi.org/10.1016/j.cropro.2007.01.003

Palsikowski, P. A., Roberto, M. M., Sommaggio, L. R., Souza, P. M., Morales, A. R., & Marin-Morales, M. A. (2018). Ecotoxicity evaluation of the biodegradable polymers PLA, PBAT and its blends using Allium cepa as test organism. Journal of Polymers and the Environment, 26, 938-945. https://doi.org/10.1007/s10924-017-0990-9

Pinkerton, J. N., Ivors, K. L., Miller, M. L., & Moore, L. W. (2000). Effect of soil solarization and cover crops on populations of selected soilborne plant pathogens in western Oregon. Plant Disease, 84(9), 952-960. https://doi.org/10.1094/PDIS.2000.84.9.952

Qi, Y., Ossowicki, A., Yang, X., Lwanga, E. H., Dini-Andreote, F., Geissen, V., & Garbeva, P. (2020). Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 387, 121711. https://doi.org/10.1016/j.jhazmat.2019.121711

Qi, Y., Yang, X., Pelaez, A.M., Lwanga, E.H., Beriot, N., Gertsen, H., Garbeva, P., & Geissen, V. (2018). Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048-1056. https://doi.org/10.1016/j.scitotenv.2018.07.229

Rahman, M. H., & Bhoi, P. R. (2021). An overview of non-biodegradable bioplastics. Journal of Cleaner Production, 294, 126218. https://doi.org/10.1016/j.jclepro.2021.126218

Ramos, L., Berenstein, G., Hughes, E. A., Zalts, A., & Montserrat, J. M. (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of the Total Environment, 523, 74-81. https://doi.org/10.1016/j.scitotenv.2015.03.142

Rillig, M. C. (2012). Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol., 46 (12), 6453-6454. https://doi.org/10.1021/es302011r

Rillig, M. C. (2018). Microplastic disguising as soil carbon storage. Environ. Sci. Technol., 2018, 52(11), 6079–6080. https://doi.org/10.1021/acs.est.8b02338

Rillig, M. C., Ingraffia, R., & de Souza Machado, A.A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science,8, 1805. https://doi.org/10.3389/fpls.2017.01805

Rillig, M. C., Lehmann, A., de Souza Machado, A.A., & Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223(3), 1066-1070. https://doi.org/10.1111/nph.15794

Rillig, M. C., Lehmann, A., Lehmann, J., Camenzind, T., & Rauh, C. (2018). Soil biodiversity effects from field to fork. Trends in Plant Science, 23(1), 17-24. https://doi.org/10.1016/j.tplants.2017.10.003

Rowdhwal, S. S. S., & Chen, J. (2018). Toxic effects of di-2-ethylhexyl phthalate: an overview. BioMed Research International, 2018, 10 pages. https://doi.org/10.1155/2018/1750368

Rubol, S., Manzoni, S., Bellin, A., & Porporato, A. (2013). Modelling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA). Advances in Water Resources, 62, 106-124. https://doi.org/10.1016/j.advwatres.2013.09.016

Samaimai, S., Krajangsang, S., Kitpreechavanich, V., Borthong, J., & Lomthong, T. (2021). Degradation of poly (Butylene succinate) and poly (butylene succinate)/poly (lactide) blends using serine protease produced from laceyella sacchari LP175. Trends in Sciences, 18(20), 37-37. https://doi.org/10.48048/tis.2021.37

Sanchez-Hernandez, J. C., Capowiez, Y., & Ro, K. S. (2020). Potential use of earthworms to enhance decaying of biodegradable plastics. ACS Sustainable Chemistry & Engineering, 8(11), 4292-4316. https://doi.org/10.1021/acssuschemeng.9b05450

Savitha, K. S., Paghadar, B. R., Kumar, M. S., & Jagadish, R. L. (2022). Polybutylene succinate, a potential bio-degradable polymer: synthesis, copolymerization and bio-degradation. Polymer Chemistry, 13(24), 3562-3612. https://doi.org/10.1039/D2PY00204C

Schöpfer, L., Menzel, R., Schnepf, U., Ruess, L., Marhan, S., Brümmer, F., Pagel, H., & Kandeler, E. (2020). Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans. Frontiers in Environmental Science, 8, 41. https://doi.org/10.3389/fenvs.2020.00041

Serrano-Ruíz, H., Eras, J., Martín-Closas, L., & Pelacho, A. M. (2020). Compounds released from unused biodegradable mulch materials after contact with water. Polymer Degradation and Stability, 178, 109202. https://doi.org/10.1016/j.polymdegradstab.2020.109202

Serrano-Ruíz, H., Martín-Closas, L., & Pelacho, A. M. (2018). Application of an in vitro plant ecotoxicity test to unused biodegradable mulches. Polymer Degradation and Stability, 158, 102-110. https://doi.org/10.1016/j.polymdegradstab.2018.10.016

Serrano-Ruiz, H., Martin-Closas, L., & Pelacho, A. M. (2021). Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of The Total Environment, 750, 141228. https://doi.org/10.1016/j.scitotenv.2020.141228

Sforzini, S., Oliveri, L., Chinaglia, S., & Viarengo, A. (2016). Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics. Frontiers in Environmental Science, 4, 68. https://doi.org/10.3389/fenvs.2016.00068

Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26(3), 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005

Sharma, U., Sharma, S., Rana, V. S., Rana, N., Kumar, V., Sharma, S., Qadri, H., Kumar, V., & Bhat, S. A. (2023). Assessment of Microplastics Pollution on Soil Health and Eco-toxicological Risk in Horticulture. Soil Systems, 7(1), 7. https://doi.org/10.3390/soilsystems7010007

Shimao, M. (2001). Biodegradation of plastics. Current opinion in biotechnology, 12(3), 242-247. https://doi.org/10.1016/S0958-1669(00)00206-8

Shruti, V.C., & Kutralam-Muniasamy, G. (2019). Bioplastics: Missing link in the era of Microplastics. Science of The Total Environment, 697, 134139. https://doi.org/10.1016/j.scitotenv.2019.134139

Silva, V., Mol, H. G., Zomer, P., Tienstra, M., Ritsema, C. J., & Geissen, V. (2019). Pesticide residues in European agricultural soils–A hidden reality unfolded. Science of the Total Environment, 653, 1532-1545. https://doi.org/10.1016/j.scitotenv.2018.10.441

Sintim, H. Y., & Flury, M. (2017). Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol, 51, 3, 1068–1069. https://doi.org/10.1021/acs.est.6b06042

Sintim, H.Y., Bandopadhyay, S., English, M.E., Bary, A.I., DeBruyn, J.M., Schaeffer, S.M., Miles, C.A., Reganold, J.P., & Flury, M. (2019). Impacts of biodegradable plastic mulches on soil health. Agriculture, Ecosystems & Environment, 273, 36-49. https://doi.org/10.1016/j.agee.2018.12.002

Sintim, H.Y., Bary, A.I., Hayes, D.G., Wadsworth, L.C., Anunciado, M.B., English, M.E., Bandopadhyay, S., Schaeffer, S.M., DeBruyn, J.M., Miles, C.A., & Flury, M. (2020). In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Science of the total environment, 727, 138668. https://doi.org/10.1016/j.scitotenv.2020.138668

Sofi, T. A., Tewari, A. K., Razdan, V. K., & Koul, V. K. (2014). Long term effect of soil solarization on soil properties and cauliflower vigor. Phytoparasitica, 42, 1-11. https://doi.org/10.1007/s12600-013-0331-z

Souza, P. M. S., Sommaggio, L. R. D., Marin-Morales, M. A., & Morales, A. R. (2020). PBAT biodegradable mulch films: Study of ecotoxicological impacts using Allium cepa, Lactuca sativa and HepG2/C3A cell culture. Chemosphere, 256, 126985. https://doi.org/10.1016/j.chemosphere.2020.126985

Stapleton, J. J., & Heald, C. M. (1991). Management of phytoparasitic nematodes by soil solarization. In: Katan, J., & DeVay, J. E. (Eds). Soil solarization, CRC Press, New York. pp. 51-60.

Sun, D., Li, H., Wang, E., He, W., Hao, W., Yan, C., Li, Y., Mei, X., Zhang, Y., Sun, Z. and Jia, Z., Zhou, H., Fan, T., Zhang, X., Liu, Q., Wang, F., Zhang, C., Shen,J., Wang, Q., & Zhang, F. (2020). An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. National Science Review, 7(10), 1523-1526. https://doi.org/10.1093/nsr/nwaa146

Tamietti, G., & Valentino, D. (2006). Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop protection, 25(4), 389-397. https://doi.org/10.1016/j.cropro.2005.07.002

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838-838. https://doi.org/ 10.1126/science.1094559

Tosin, M., Pischedda, A., & Degli-Innocenti, F. (2019). Biodegradation kinetics in soil of a multi-constituent biodegradable plastic. Polymer Degradation and Stability, 166, 213-218. https://doi.org/10.1016/j.polymdegradstab.2019.05.034

Touchaleaume, F., Angellier-Coussy, H., César, G., Raffard, G., Gontard, N., & Gastaldi, E. (2018). How performance and fate of biodegradable mulch films are impacted by field ageing. Journal of Polymers and the Environment, 26, 2588-2600. https://doi.org/10.1007/s10924-017-1154-7

U.S. Department of Agriculture. (2008). Soil quality test kit guide [Online]. Available: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/health/assessment/?cid=nrcs142p2_053873.Accessed 27 Feb 2023.

U.S. Environmental Protection Agency (2019). Chemical Safety and Pollution Prevention. Accessed on February 2023. https://www.epa.gov/newsreleases/epa-finalizes-list-next-20-chemicals-undergo-risk-evaluation-under-tsca.

Veresoglou, S. D., Halley, J. M., & Rillig, M. C. (2015). Extinction risk of soil biota. Nature communications, 6(1), 8862. https://doi.org/10.1038/ncomms9862

Wan, Y., Wu, C., Xue, Q., & Hui, X. (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of the Total Environment, 654, 576-582. https://doi.org/10.1016/j.scitotenv.2018.11.123

Wang, F., Zhang, X., Zhang, S., Zhang, S., & Sun, Y. (2020). Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 254, 126791. https://doi.org/10.1016/j.chemosphere.2020.126791

Wang, J. H., Tian, Y., & Zhou, B. (2022). Degradation and Stabilization of Poly (Butylene Adipate-co-Terephthalate)/Polyhydroxyalkanoate Biodegradable Mulch Films Under Different Aging Tests. Journal of Polymers and the Environment, 1-14. https://doi.org/10.1007/s10924-021-02279-z

Wortman, S. E., Kadoma, I., & Crandall, M. D. (2016). Biodegradable plastic and fabric mulch performance in field and high tunnel cucumber production. Hort. Technology, 26(2), 148-155.https://doi.org/10.21273/horttech.26.2.148

Yamamoto-Tamura, K., Hiradate, S., Watanabe, T., Koitabashi, M., Sameshima-Yamashita, Y., Yarimizu, T., & Kitamoto, H. (2015). Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils. AMB Express, 5, 1-8. https://doi.org/10.1186/s13568-014-0088-x

Yin, J., Liu, R., Jian, Z., Yang, D., Pu, Y., Yin, L., & Wang, D. (2018). Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 163, 298-306. https://doi.org/10.1016/j.ecoenv.2018.07.066

Zhang, D., Liu, H., Ma, Z., Tang, W., Wei, T., Yang, H., Li, J., & Wang, H. (2017). Effect of residual plastic film on soil nutrient contents and microbial characteristics in the farmland. Scientia Agricultura Sinica, 50(2), 310-319. https://doi.org/10.3864/j.issn.0578- 1752.2017.02.010

Zhang, L., Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., & Flury, M. (2018). Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch. Science of the Total Environment, 635, 1600-1608.

https://doi.org/10.1016/j.scitotenv.2018.04.054

Zhang, M., Jia, H., Weng, Y., & Li, C. (2019). Biodegradable PLA/PBAT mulch on microbial community structure in different soils. International Biodeterioration & Biodegradation, 145, 104817. https://doi.org/10.1016/j.ibiod.2019.104817

Zhang, M., Xue, Y., Jin, T., Zhang, K., Li, Z., Sun, C., Mi, Q., & Li, Q., (2022). Effect of long-term biodegradable film mulch on soil physicochemical and microbial properties. Toxics, 10(3), 129. https://doi.org/10.3390/toxics10030129

Zhang, W., Ma, J., Cui, Z., Xu, L., Liu, Q., Li, J., Wang, S., & Zeng, X. (2023). Effects of Biodegradable Plastic Mulch Film on Cabbage Agronomic and Nutritional Quality Traits, Soil Physicochemical Properties and Microbial Communities. Agronomy, 13(5), 1220.

Zhou, W., Bergsma, S., Colpa, D. I., Euverink, G. J. W., & Krooneman, J. (2023). Polyhydroxy-alkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. Journal of Environmental Management, 341, 118033. https://doi.org/10.1016/j.jenvman.2023.118033

Published

2023-08-30

How to Cite

Bandyopadhyay, A., Sinha, A., Thakur, P., Thakur, S., & Ahmed, M. (2023). A review of soil pollution from LDPE mulching films and the consequences of the substitute biodegradable plastic on soil health. International Journal of Experimental Research and Review, 32, 15–39. https://doi.org/10.52756/ijerr.2023.v32.002

Issue

Section

Articles