Study of Wear Rate of AA7050-7.5 B4C-T6 Composite and Optimization of Response Parameters using Taguchi Analysis

Keywords: Al/B4C composite, Mechanical Mix Layer (MML), Taguchi Analysis, Wear, Stir Casting

Abstract

High-strength-to-weight ratio materials are crucial for the automotive and aerospace sectors, driving the demand for advanced solutions. Traditional monolithic materials fall short of meeting these requirements, prompting the exploration of ceramic-based metal matrix composites. Among these, the Al/B4C composite stands out for its exceptional wear-resistant properties, attributed to its heightened hardness and shear resistance. This study investigates the wear performance of AA 7050-7.5% B4C-T6 Composite, produced via flux (K2TiF6) assisted stir casting method. The wear rate serves as the primary performance metric, evaluated using a pin-on-disc tribometer. Experimental design employs a Taguchi L9 orthogonal array, facilitating systematic analysis. Taguchi Analysis optimizes the process parameters, revealing insights into their impact on wear performance. The wear rate directly correlates with both applied load and sliding distance, indicating higher wear with increased stress and sliding duration. Additionally, the sliding speed intermittently influences the wear rate due to a Mechanical Mix Layer (MML) presence, highlighting the complex interplay of factors influencing wear behaviour. In summary, this research underscores the potential of AA 7050-7.5% B4C-T6 Composite as a promising wear-resistant material, offering valuable insights into optimizing its performance through controlled process parameters.

References

Chatterjee, A., Sen, S., Paul, S., Ghosh, K., Ghosh, M., & Sutradhar, G. (2022). Fabrication and Characterization of Silicon Carbide and Graphite Reinforced Aluminium Matrix Composite. Journal of The Institution of Engineers (India): Series D, 1-15. https://doi.org/10.1007/s40033-022-00423-0

Gopikrishnan, C., & Ravichandran, M. (2023). Investigations on Mechanical and Wear Properties of Molybdenum Trioxide-Reinforced Aluminum Alloy (AA7075) Matrix Composites Produced via Stir Casting Process. Arab J. Sci. Eng., 48, 3021–3040. https://doi.org/10.1007/s13369-022-07059-y

Hashim, J., Looney, L., & Hashmi, M. S. J. (2002). Particle distribution in cast metal matrix composites—Part I. Journal of Materials Processing Technology, 123(2), 251-257.

Hossain, S., Rahman, M. M., Chawla, D., Kumar, A., Seth, P. P., Gupta, P., ... & Jamwal, A. (2020). Fabrication, microstructural and mechanical behaviour of Al-Al2O3-SiC hybrid metal matrix composites. Materials Today: Proceedings, 21, 1458-1461. https://doi.org/10.1016/j.matpr.2019.10.089

Kumar, A., & Rai, R. N. (2018). Fabrication, microstructure and mechanical properties of boron carbide (B4Cp) reinforced aluminium metal matrix composite-a review. In IOP Conference Series: Materials Science and Engineering, 377(1), 012092.

Kumar, C., Sukanta Sarkar, S., Mukhopadhyay, G., Chakraborti, P.C., Sen, I., & Roy, S. (2023). Systematic study of the effect of K2TiF6 flux content on the microstructure and mechanical properties of Al– B4C composites. Materials Science and Engineering: A, 871, 2023.

Khalkho, J.S., Karunakar, D.B., & Vidyasagar, S. (2023). Effect of Aging and Rolling on Microstructure and Mechanical Properties of AA7075/TaC Composites. J. Materi. Eng. Perform., 32, 9079–9100. https://doi.org/10.1007/s11665-022-07788-z

Kumar, A., & Rai, R. N. (2020). Study on the Development of a Quaternary Layer of B 4 C-TiB 2-Al 3 Ti-Al in AA7050/B 4 C Ex-Situ Composite and Influence of Heat Treatment on Mechanical and Wear Properties. Journal of Mechanical Engineering 17(2), 1823-5514. https://doi.org/10.24191/jmeche.v17i2.15305

Kumar, A., & Rai, R. N. (2020). Evaluation of dry sliding wear properties of stir cast AA7050/10B4C composites through fuzzy-ARAS. Springer Singapore, In Advances in Mechanical Engineering: Select Proceedings of ICRIDME, 2018, pp. 449-457. https://doi.org/10.1007/978-981-15-0124-1_40

Kumar, A., Pal, A., & Rai, R. N. (2020). MOGA optimisation of wear performance of stir cast AA7050/B4C-T6 ex-situ metal matrix composite. International Journal of Materials and Product Technology, 60(2-4), 180-194. https://doi.org/10.1504/IJMPT.2020.110115

Manjunath, N.H.R., Manjunath, L.H., Vinayak, M., Manjunath, P.G.C., Kuldeep, K.S., & Avinash, L. (2021). Effect of microstructure, mechanical and wear on Al-CNTs/graphene hybrid MMC’S, Advances in Materials and Processing Technologies, 8(sup2), 366–379. https://doi.org/10.1080/2374068X.2021.1927646

Mazahery, A., & Mohsen, O. S. (2012). Study on microstructure and abrasive wear behavior of sintered Al matrix composites. Ceramics International, 38(5), 4263-4269. https://doi.org/10.1016/j.ceramint.2012.02.008.

Mishra, A. K., Sheokand, R., & Srivastava, R. K. (2012). Tribological behavior of Al-6061/SiC metal matrix composite by Taguchi’s techniques. International Journal of Scientific and Research Publications, 2(10), 1-8.

Najjar, I., Sadoun, A., Alam, M. N., & Fathy, A. (2023). Prediction of wear rates of Al-TiO2 nanocomposites using artificial neural network modified with particle swarm optimization algorithm. Materials Today Communications, 35, 105743. https://doi.org/10.1016/j.mtcomm.2023.105743

Nathan, S. R., Suganeswaran, K., Kumar, S., Thangavel, P., & Gobinath, V. K. (2023). Investigations on microstructure, thermo-mechanical and tribological behavior of graphene oxide reinforced AA7075 surface composites developed via friction stir processing. Journal of Manufacturing Processes, 90, 139-150. https://doi.org/10.1016/j.jmapro.2023.01.084

Nagaral, M., Auradi, V., Kori, S. A., & Hiremath, V. (2019). Investigations on mechanical and wear behavior of nano Al2O3 particulates reinforced AA7475 alloy composites. Journal of Mechanical Engineering and Sciences, 13(1), 4623-4635. https://doi.org/10.15282/jmes.13.1.2019.19.0389

Ranjith, R., Giridharan, P. K., Devaraj, J., & Bharath, V. (2017). Influence of titanium-coated (B 4 C p+ SiC p) particles on sulfide stress corrosion and wear behavior of AA7050 hybrid composites (for MLG link). Journal of the Australian Ceramic Society, 53, 1017-1025. https://doi.org/10.1007/s41779-017-0119-6

Ross, P.J. (1996). Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter, and Tolerance Design -2nd ed., New York, NY: McGraw-Hill.

Rosa, J.L., Robin, A., Silva, M.B., Baldan, C.A., & Peres, M.P. (2009). Electrode position of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology, 209(3), 1181-1188. https://doi.org/10.1016/j.jmatprotec.2008.03.021

Reddy, P. V., Kumar, G. S., Krishnudu, D. M., & Rao, H. R. (2020). Mechanical and wear performances of aluminum-based metal matrix composites: a review. Journal of Bio-and Tribo-Corrosion, 6, 83. https://doi.org/10.1007/s40735-020-00379-2

Ravikumar, M., Reddappa, H. N., Suresh, R., Babu, E. R., & Nagaraja, C. R. (2021). Study on micro-nano sized Al2O3 particles on mechanical, wear and fracture behavior of Al7075 Metal Matrix Composites. Frattura ed Integrità Strutturale, 15(58), 166-178. https://doi.org/10.3221/IGF-ESIS.58.12

Sharma, P., Paliwal, K., Garg, R. K., Sharma, S., & Khanduja, D. (2017). A study on wear behaviour of Al/6101/graphite composites. Journal of Asian Ceramic Societies, 5(1), 42-48. https://doi.org/10.1016/j.jascer.2016.12.007

Singh, J., & Chauhan, A. (2016). Overview of wear performance of aluminum matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceramics International, 42(1), 56-81. https://doi.org/10.1016/j.ceramint.2015.08.150

Venkatesh, R., Niranjan, C. A., Srinivas, S., & Raghavendra, T. (2023). Workability Studies on Al6061 Alloy and Al6061 Metal Matrix Composites Reinforced with Silicon Carbide Particles Under Cold Backward Extrusion. Journal of The Institution of Engineers (India): Series D, 104(1), 373-389. https://doi.org/10.1007/s40033-022-00400-7

Yasin, G., Baris, A., Mrutyunjay, P., Bünyamin, A., & Abdulhalik, K. (2023). Effect of the B4C content on microstructure, microhardness, corrosion, and neutron shielding properties of Al–B4C composites. Ceramics International, 49(3), 5479-5488. https://doi.org/10.1016/j.ceramint.2022.10.071

Yigezu, B. S., Mahapatra, M. M., & Jha, P. K. (2013). On modeling the abrasive wear characteristics of in situ Al–12% Si/TiC composites. Materials & Design, 50, 277-284. https://doi.org/10.1016/j.matdes.2013.02.042

Zhao, L., Zhou, D., Xie, G., Peng, Y., Cui, X., Wang, J., & Xiong, T. (2023). Unraveling the influence of Al particle size on microstructure and tribological properties of cold sprayed Al/B4C composite coatings. Materials Today Communications, 34, 105257. https://doi.org/10.1016/j.mtcomm.2022.105257.

Published
2024-05-30
How to Cite
Kumar, A., Kumar, R., & Kumar, A. (2024). Study of Wear Rate of AA7050-7.5 B4C-T6 Composite and Optimization of Response Parameters using Taguchi Analysis. International Journal of Experimental Research and Review, 39(Spl Volume), 73-81. https://doi.org/10.52756/ijerr.2024.v39spl.005