Systematic Exploration Using Intelligent Computing Techniques for Clinical Diagnosis of Gastrointestinal Disorder: A Review

Authors

DOI:

https://doi.org/10.52756/ijerr.2023.v36.026

Keywords:

Gastrointestinal disorders, intelligent computing, deep learning, machine learning, endoscopy, colonoscopy

Abstract

In today's era, the growing ratio of Gastrointestinal (GI) diseases in human beings has become a crucial point of notice and must be diagnosed as early as possible. There are various methods to diagnose abdomen-related problems using medical imaging techniques like ultrasound, endoscopy, Colonoscopy, abdominal CT scan and digital X-ray, etc. Endoscopy is one of the most efficient medical imaging techniques for diagnosing gastrointestinal (GI) diseases. Manual diagnosis of endoscopic images may have a possibility of committing mistakes in properly detecting gastrointestinal disorders because tiny particles are involved in endoscopic images and may be responsible for critical disorders. However, manual diagnosis may ignore such information because of less efficiency of vision and observation. To avoid such problems, various models based on soft computing and neuro-fuzzy techniques have been proposed to detect and classify various gastrointestinal disorders. In this article, the authors propose a systematic review of previous research that has been carried out using intelligent computing methods. Here, various conventional approaches are discussed and compared. This review research shows performance limitations due to complex data models, heterogeneous datasets and the absence of intelligent feature selection methods in diagnosing gastrointestinal disorders.

References

Abraham, N. S., Singh, S., Alexander, G. C., Heien, H., Haas, L. R., Crown, W., & Shah, N. D. (2015). Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population-based cohort study. BMJ, 350, h1857. https://doi.org/10.1136/bmj.h1857

Ai, L., Tian, H., Chen, Z., Chen, H., Xu, J., & Fang, J. Y. (2017). Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget, 8(6), 9546. https://doi/10.18632/oncotarget.14488

Alfarone, L., Parigi, T. L., Gabbiadini, R., Dal Buono, A., Spinelli, A., Hassan, C., ... & Armuzzi, A. (2022). Technological advances in inflammatory bowel disease endoscopy and histology. Frontiers in Medicine, 9, 1058875. https://doi.org/10.3389/fmed.2022.1058875

Alhajlah, M., Noor, M. N., Nazir, M., Mahmood, A., Ashraf, I., & Karamat, T. (2023). Gastrointestinal Diseases Classification Using Deep Transfer Learning and Features Optimization. CMC-Computers Materials & Continua, 75(1), 2227-2245.

Ayyaz, M. S., Lali, M. I. U., Hussain, M., Rauf, H. T., Alouffi, B., Alyami, H., & Wasti, S. (2022). Hybrid deep learning model for endoscopic lesion detection and classification using endoscopy videos. Diagnostics, 12(1), 43. https://doi.org/10.3390/diagnostics12010043

Bernal, J., Tajkbaksh, N., Sanchez, F. J., Matuszewski, B. J., Chen, H., Yu, L., ... & Histace, A. (2017). Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Transactions on Medical Imaging, 36(6), 1231-1249. https://doi.org/10.1109/TMI.2017.2664042

Billah, M., Waheed, S., & Rahman, M. M. (2017). An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features. International Journal of Biomedical Imaging, 2017, 1-9. https://doi.org/10.1155/2017/9545920

Bisgin, A., Hanta, A., Rencuzogullari, A., Eray, I., Pathak, S., & Boga, I. (2023). Changes of gut microbiota in FAP and UC patients in Mediterranean region of Turkey: an omic landscape to be discovered. International Journal of Experimental Research and Review, 30, 257-263. https://doi.org/10.52756/ijerr.2023.v30.023

Bisschops, R., Areia, M., Coron, E., Dobru, D., Kaskas, B., Kuvaev, R., ... & Rutter, M. D. (2016). Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative. Endoscopy, 48(9), 843-864. https://doi.org/10.1055/s-0042-113128

Carpentier, S., Sharara, N., Barkun, A. N., El Ouali, S., Martel, M., & Sewitch, M. J. (2016). Pilot validation study: Canadian global rating scale for colonoscopy services. Canadian Journal of Gastroenterology and Hepatology, 2016, 6982739. https://doi.org/10.1155/2016/6982739

Choi, S. J., Kim, E. S., & Choi, K. (2021). Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms. Scientific Reports, 11(1), 5311. https://doi.org/10.1038/s41598-021-84299-2

De Groof, A. J., Struyvenberg, M. R., van der Putten, J., van der Sommen, F., Fockens, K. N., Curvers, W. L., ... & Bergman, J. J. (2020). Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology, 158(4), 915-929. https://doi.org/10.1053/j.gastro.2019.11.030

Ebigbo, A., Mendel, R., Probst, A., Manzeneder, J., Prinz, F., de Souza Jr, L. A., ... & Messmann, H. (2020). Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut, 69(4), 615-616. http://dx.doi.org/10.1136/gutjnl-2019-319460

Faghih Dinevari, V., Karimian Khosroshahi, G., & Zolfy Lighvan, M. (2016). Singular value decomposition-based features for automatic tumor detection in wireless capsule endoscopy images. Applied Bionics and Biomechanics, 2016, 1-8. https://doi.org/10.1155/2016/3678913

Fati, S. M., Senan, E. M., & Azar, A. T. (2022). Hybrid and deep learning approach for early diagnosis of lower gastrointestinal diseases. Sensors, 22(11), 4079. https://doi.org/10.3390/s22114079

Abraham, N. S., Singh, S., Alexander, G. C., Heien, H., Haas, L. R., Crown, W., & Shah, N. D. (2015). Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population-based cohort study. BMJ, 350, h1857. https://doi.org/10.1136/bmj.h1857

Ai, L., Tian, H., Chen, Z., Chen, H., Xu, J., & Fang, J. Y. (2017). Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget, 8(6), 9546. https://doi/10.18632/oncotarget.14488

Alfarone, L., Parigi, T. L., Gabbiadini, R., Dal Buono, A., Spinelli, A., Hassan, C., ... & Armuzzi, A. (2022). Technological advances in inflammatory bowel disease endoscopy and histology. Frontiers in Medicine, 9, 1058875. https://doi.org/10.3389/fmed.2022.1058875

Alhajlah, M., Noor, M. N., Nazir, M., Mahmood, A., Ashraf, I., & Karamat, T. (2023). Gastrointestinal Diseases Classification Using Deep Transfer Learning and Features Optimization. CMC-Computers Materials & Continua, 75(1), 2227-2245.

Ayyaz, M. S., Lali, M. I. U., Hussain, M., Rauf, H. T., Alouffi, B., Alyami, H., & Wasti, S. (2022). Hybrid deep learning model for endoscopic lesion detection and classification using endoscopy videos. Diagnostics, 12(1), 43. https://doi.org/10.3390/diagnostics12010043

Bernal, J., Tajkbaksh, N., Sanchez, F. J., Matuszewski, B. J., Chen, H., Yu, L., ... & Histace, A. (2017). Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Transactions on Medical Imaging, 36(6), 1231-1249. https://doi.org/10.1109/TMI.2017.2664042

Billah, M., Waheed, S., & Rahman, M. M. (2017). An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features. International Journal of Biomedical Imaging, 2017, 1-9. https://doi.org/10.1155/2017/9545920

Bisgin, A., Hanta, A., Rencuzogullari, A., Eray, I., Pathak, S., & Boga, I. (2023). Changes of gut microbiota in FAP and UC patients in Mediterranean region of Turkey: an omic landscape to be discovered. International Journal of Experimental Research and Review, 30, 257-263. https://doi.org/10.52756/ijerr.2023.v30.023

Bisschops, R., Areia, M., Coron, E., Dobru, D., Kaskas, B., Kuvaev, R., ... & Rutter, M. D. (2016). Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative. Endoscopy, 48(9), 843-864. https://doi.org/10.1055/s-0042-113128

Carpentier, S., Sharara, N., Barkun, A. N., El Ouali, S., Martel, M., & Sewitch, M. J. (2016). Pilot validation study: Canadian global rating scale for colonoscopy services. Canadian Journal of Gastroenterology and Hepatology, 2016, 6982739. https://doi.org/10.1155/2016/6982739

Choi, S. J., Kim, E. S., & Choi, K. (2021). Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms. Scientific Reports, 11(1), 5311. https://doi.org/10.1038/s41598-021-84299-2

De Groof, A. J., Struyvenberg, M. R., van der Putten, J., van der Sommen, F., Fockens, K. N., Curvers, W. L., ... & Bergman, J. J. (2020). Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology, 158(4), 915-929. https://doi.org/10.1053/j.gastro.2019.11.030

Ebigbo, A., Mendel, R., Probst, A., Manzeneder, J., Prinz, F., de Souza Jr, L. A., ... & Messmann, H. (2020). Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut, 69(4), 615-616. http://dx.doi.org/10.1136/gutjnl-2019-319460

Faghih Dinevari, V., Karimian Khosroshahi, G., & Zolfy Lighvan, M. (2016). Singular value decomposition-based features for automatic tumor detection in wireless capsule endoscopy images. Applied Bionics and Biomechanics, 2016, 1-8. https://doi.org/10.1155/2016/3678913

Fati, S. M., Senan, E. M., & Azar, A. T. (2022). Hybrid and deep learning approach for early diagnosis of lower gastrointestinal diseases. Sensors, 22(11), 4079. https://doi.org/10.3390/s22114079

identification of colon cancer candidate diagnostics genes. Biology, 11(3), 365. https://doi.org/10.3390/biology11030365

Kumagai, Y., Kawada, K., Higashi, M., Ishiguro, T., Sobajima, J., Fukuchi, M., ... & Takubo, K. (2015). Endocytoscopic observation of various esophageal lesions at× 600: can nuclear abnormality be recognized? Diseases of the Esophagus, 28(3), 269-275. https://doi.org/10.1111/dote.12183

Lee, S. Y., Han, H. S., Cha, J. M., Cho, Y. K., Kim, G. H., & Chung, I. K. (2014). Endoscopic flushing with pronase improves the quantity and quality of gastric biopsy: a prospective study. Endoscopy, 46, 747-753. https://doi.org/10.1055/s-0034-1365811

Liu, G., Yan, G., Kuang, S., & Wang, Y. (2016). Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy. Computers in Biology and Medicine, 70, 131-138. https://doi.org/10.1016/j.compbiomed.2016.01.021

Lu, F., Lei, T., Zhou, J., Liang, H., Cui, P., Zuo, T., ... & Huang, J. (2023). Using gut microbiota as a diagnostic tool for colorectal cancer: machine learning techniques reveal promising results. Journal of Medical Microbiology, 72(6), 001699. https://doi.org/10.1099/jmm.0.001699

Mabe, K., Kato, M., Oba, K., Nakagawa, S., Seki, H., Katsuki, S., ... & Sapporo Consensus Study Group. (2017). A prospective, multicenter survey on the validity of shorter periendoscopic cessation of antithrombotic agents in Japan. Journal of Gastroenterology, 52, 50-60. https://doi.org/10.1007/s00535-016-1203-3

MacIntosh, D., Dubé, C., Hollingworth, R., van Zanten, S. V., Daniels, S., & Ghattas, G. (2013). The endoscopy Global Rating Scale–Canada: Development and implementation of a quality improvement tool. Canadian Journal of Gastroenterology and Hepatology, 27, 74-82. https://doi.org/10.1155/2013/165804

Maeda, Y., Kudo, S. E., Mori, Y., Misawa, M., Ogata, N., Sasanuma, S., ... & Ohtsuka, K. (2019). Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointestinal Endoscopy, 89(2), 408-415. https://doi.org/10.1016/j.gie.2018.09.024]

Mehedi, I. M., Rao, K. P., Alotaibi, F. M., & Alkanfery, H. M. (2023). Intelligent Wireless Capsule Endoscopy for the Diagnosis of Gastrointestinal Diseases. Diagnostics, 13(8), 1445. https://doi.org/10.3390/diagnostics13081445

Mesejo, P., Pizarro, D., Abergel, A., Rouquette, O., Beorchia, S., Poincloux, L., & Bartoli, A. (2016). Computer-aided classification of gastrointestinal lesions in regular Colonoscopy. IEEE Transactions on Medical Imaging, 35(9), 2051-2063. https://doi.org/10.1109/TMI.2016.2547947

Mohapatra, S., Pati, G. K., Mishra, M., & Swarnkar, T. (2023). Gastrointestinal abnormality detection and classification using empirical wavelet transform and deep convolutional neural network from endoscopic images. Ain Shams Engineering Journal, 14(4), 101942. https://doi.org/10.1016/j.asej.2022.101942

Mori, Y., Kudo, S. E., Misawa, M., Saito, Y., Ikematsu, H., Hotta, K., ... & Mori, K. (2018). Real-time use of artificial intelligence in identification of diminutive polyps during Colonoscopy: a prospective study. Annals of Internal Medicine, 169(6), 357-366. https://doi.org/10.7326/M18-0249

Naz, J., Sharif, M., Yasmin, M., Raza, M., & Khan, M. A. (2021). Detection and classification of gastrointestinal diseases using machine learning. Current Medical Imaging, 17(4), 479-490. http://dx.doi.org/10.2174/1573405616666200928144626

Nguyen, H. G., Blank, A., Dawson, H. E., Lugli, A., & Zlobec, I. (2021). Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods. Scientific Reports, 11(1), 2371. https://doi.org/10.1038/s41598-021-81352-y

Niu, J., Chen, H., Peng, J., & Yuan, H. (2023). A systematic review and meta-analysis of clinical trials of thyroids hormone using ultrasound-based datasets. International Journal of Radiation Research, 21(3), 577-584. https:// https://doi.org/10.52547/ijrr.21.3.30

Ono, S., Fujishiro, M., Yoshida, N., Doyama, H., Kamoshida, T., Hirai, S., ... & Koike, K. (2015). Thienopyridine derivatives as risk factors for bleeding following high risk endoscopic treatments: Safe Treatment on Antiplatelets (STRAP) study. Endoscopy, 47(07), 632-637. https://doi.org/10.1055/s-0034-1391354

Pan, J., Xin, L., Ma, Y. F., Hu, L. H., & Li, Z. S. (2016). Colonoscopy reduces colorectal cancer incidence and mortality in patients with non-malignant findings: a meta-analysis. The American journal of gastroenterology, 111(3), 355. https:// https://doi.org/10.1038/ajg.2015.418

Ramamurthy, K., George, T. T., Shah, Y., & Sasidhar, P. (2022). A novel multi-feature fusion method for classification of gastrointestinal diseases using endoscopy images. Diagnostics, 12(10), 2316. https://doi.org/10.3390/diagnostics12102316

Romain, O., Histace, A., Silva, J., Ayoub, J., Granado, B., Pinna, A., ... & Marteau, P. (2013, November). Towards a multimodal wireless video capsule for detection of colonic polyps as prevention of colorectal cancer. IEEE, In 13th IEEE International Conference on Bioinformatics and Bioengineering, pp. 1-6. https://doi.org/10.1109/BIBE.2013.6701670

Ruff, C. T., Giugliano, R. P., Braunwald, E., Hoffman, E. B., Deenadayalu, N., Ezekowitz, M. D., ... & Antman, E. M. (2014). Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. The Lancet, 383(9921), 955-962. https://doi.org/10.1016/S0140-6736(13)62343-0

Sarwinda, D., Paradisa, R. H., Bustamam, A., & Anggia, P. (2021). Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Computer Science, 179, 423-431. https://doi.org/10.1016/j.procs.2021.01.025

Sharma, A., Kumar, R., & Garg, P. (2023). Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images. International Journal of Medical Informatics, 177, 105142. https://doi.org/10.1016/j.ijmedinf.2023.105142

Shen, Y., & Ke, J. (2021). Sampling based tumor recognition in whole-slide histology image with deep learning approaches. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(4), 2431-2441. https://doi.org/10.1109/TCBB.2021.3062230

Siau, K., Green, J. T., Hawkes, N. D., Broughton, R., Feeney, M., Dunckley, P., ... & Thomas-Gibson, S. (2019). Impact of the joint Advisory group on gastrointestinal endoscopy (JAG) on endoscopy services in the UK and beyond. Frontline Gastroenterology, 10(2), 93-106. http://dx.doi.org/10.1136/flgastro-2018-100969

Srivastava, A., Sengupta, S., Kang, S. J., Kant, K., Khan, M., Ali, S. A., ... & Brown, D. E. (2019, April). Deep learning for detecting diseases in gastrointestinal biopsy images. IEEE. In 2019 Systems and Information Engineering Design Symposium (SIEDS), pp. 1-4. https://doi: 10.1109/SIEDS.2019.8735619.

Struyvenberg, M. R., van der Sommen, F., Swager, A. F., de Groof, A. J., Rikos, A., Schoon, E. J., ... & Curvers, W. L. (2020). Improved Barrett's neoplasia detection using computer-assisted multiframe analysis of volumetric laser endomicroscopy. Diseases of the Esophagus, 33(2), doz065. https://doi.org/10.1093/dote/doz065

Swager, A. F., Curvers, W. L., & Bergman, J. J. (2016). Diagnosis by endoscopy and advanced imaging of Barrett’s neoplasia. Stem Cells, Pre-neoplasia, and Early Cancer of the Upper Gastrointestinal Tract, 908, 81-98. https://doi.org/10.1007/978-3-319-41388-4_5

Swager, A. F., van der Sommen, F., Klomp, S. R., Zinger, S., Meijer, S. L., Schoon, E. J., ... & Curvers, W. L. (2017). Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy. Gastrointestinal Endoscopy, 86(5), 839-846. https://doi.org/10.1016/j.gie.2017.03.011

Takamatsu, M., Yamamoto, N., Kawachi, H., Chino, A., Saito, S., Ueno, M., ... & Takeuchi, K. (2019). Prediction of early colorectal cancer metastasis by machine learning using digital slide images. Computer methods and programs in biomedicine, 178, 155-161. https://doi.org/10.1016/j.cmpb.2019.06.022

Takeda, K., Kudo, S. E., Mori, Y., Misawa, M., Kudo, T., Wakamura, K., ... & Mori, K. (2017). Accuracy of diagnosing invasive colorectal cancer using computer-aided endocytoscopy. Endoscopy, 49(08), 798-802. https://doi.org/10.1055/s-0043-105486

Takenaka, K., Ohtsuka, K., Fujii, T., Negi, M., Suzuki, K., Shimizu, H., ... & Watanabe, M. (2020). Development and validation of a deep neural network for accurate evaluation of endoscopic images from patients with ulcerative colitis. Gastroenterology, 158(8), 2150-2157. https://doi.org/10.1053/j.gastro.2020.02.012

Teh, J. L., Tan, J. R., Lau, L. J. F., Saxena, N., Salim, A., Tay, A., ... & So, J. B. Y. (2015). Longer examination time improves detection of gastric cancer during diagnostic upper gastrointestinal endoscopy. Clinical Gastroenterology and Hepatology, 13(3), 480-487. https://doi.org/10.1016/j.cgh.2014.07.059

Van der Sommen, F., Zinger, S., Curvers, W. L., Bisschops, R., Pech, O., Weusten, B. L., ... & Schoon, E. J. (2016). Computer-aided detection of early neoplastic lesions in Barrett’s esophagus. Endoscopy, 617-624. https://doi.org/10.1055/s-0042-105284

Wang, K. L., Lip, G. Y., Lin, S. J., & Chiang, C. E. (2015). Non–vitamin K antagonist oral anticoagulants for stroke prevention in Asian patients with nonvalvular atrial fibrillation: meta-analysis. Stroke, 46(9), 2555-2561. https://doi.org/10.1161/STROKEAHA.115.009947

Wolfsen, H. C. (2016). Volumetric laser endomicroscopy in patients with Barrett esophagus. Gastroenterology & Hepatology, 12(11), 719-722.

Yang, S., Lemke, C., Cox, B. F., Newton, I. P., Näthke, I., & Cochran, S. (2021). A learning-based microultrasound system for the detection of inflammation of the gastrointestinal tract. IEEE Transactions on Medical Imaging, 40(1), 38-47. https://doi.org/10.1109/TMI.2020.3021560

Yang, X. X., Li, Z., Shao, X. J., Ji, R., Qu, J. Y., Zheng, M. Q., ... & Zuo, X. L. (2021). Real‐time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video). Digestive Endoscopy, 33(7), 1075-1084. https://doi.org/10.1111/den.13908]

Yao, Y., Gou, S., Tian, R., Zhang, X., & He, S. (2021). Automated classification and segmentation in colorectal images based on self-paced transfer network. BioMed Research International, 2021, 1-7. https://doi.org/10.1155/2021/6683931

Yogapriya, J., Chandran, V., Sumithra, M. G., Anitha, P., Jenopaul, P., & Suresh Gnana Dhas, C. (2021). Gastrointestinal tract disease classification from wireless endoscopy images using pretrained deep learning model. Computational and mathematical Methods in Medicine, 2021, 1-12. https://doi.org/10.1155/2021/5940433

Zhang, B., Liang, X., Gao, H., Ye, L., & Wang, Y. (2016). Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis. Genet Mol. Res., 15(2), 10-4238. http://dx.doi.org/10.4238/gmr.15028643

Published

2023-12-30

How to Cite

Srivastava, R., & Tripathi, M. M. (2023). Systematic Exploration Using Intelligent Computing Techniques for Clinical Diagnosis of Gastrointestinal Disorder: A Review. International Journal of Experimental Research and Review, 36, 265–284. https://doi.org/10.52756/ijerr.2023.v36.026

Issue

Section

Articles