A comprehensive study on the assessment of chemically modified Azolla pinnata as a potential cadmium sequestering agent

  • Kaakarlu Shivakumar Vinanthi Rajalakshmi Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India https://orcid.org/0009-0005-7427-5239
  • Kuppusamy Alagesan Paari Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India https://orcid.org/0000-0002-6080-4137
Keywords: Azolla pinnata, bioactive profile, bioremediation, cadmium chelation, chemical treatment, surface modifications

Abstract

The major environmental issue raised throughout the world is the egression of toxic pollutants in water bodies. Hence, employment of novel technological interventions such as bioremediation and phytoremediation for mitigating the toxic effects caused by the pollutants has gained attention. The aquatic macrophyte, Azolla pinnata is utilized as a biofiltering agent in the present study for the chelation of metal toxicants from the artificial wastewater system. The nutritive value of A. pinnata was determined to be 268.99Kcal/100g energy and the mineral profiling showed the highest amount of calcium (54.7ppm), iron (14.04ppm) and manganese (7.96 ppm). The quantitative screening of total phenolic and total flavonoid contents showed a maximum of 402.33±4.29 mg/g GAE and 105.25±3.81 mg/g QE respectively and the sample exhibited strong antioxidant activity in quenching the DPPH radicals with an IC50 value of 88.27μg/ml. Similarly, the highest bioactivity was observed in methanolic and chloroform extract of A. pinnata biomass showing the zone of growth inhibition against E. coli (17mm) and S. aureus (18mm). The results recorded from the SEM-EDX, GCMS, FTIR and XRD confirmed the adsorptive properties of biomass. The chemically modified and unmodified Azolla exposed to cadmium metal solution showed the maximum adsorption of about 0.47±0.001 and 0.48±0.003 ppm in 60mins using the unmodified biomass with dosage of 0.75 and 1.0g respectively. Moreover, the results recorded from the instrumental characterization for the adsorptive properties of Azolla biomass proved that cadmium chelation is due to the modifications caused in porosity, surface structure and the addition of functional groups in the treated biomass surface.

References

Anitha, K.C., Rajeshwari, Y.B., Prasanna, S.B., & Shilpa, S.J. (2016). Nutritive evaluation of Azolla as livestock feed. Journal of Experimental Biology and Agricultural Sciences, 4(6), 670-674. http://dx.doi.org/10.18006/2016.4(Issue6).670.674

AOAC International (2019). Official Methods of Analysis, AOAC International, Gaithersburg, MD, 19th edition, 2019.

AOAC. (2005). Association of Official Analytical Chemists. Official Methods of Analysis. 18th Edition, Maryland, USA.

Badayos, R. B. (1989). Azolla: Its Culture, Management and Utilization in the Philippines. Philippine Azolla Extension Program; National Azolla Action Program: Los Baños, Philippines, 69, 275-282.

Balaji, K., Jalaludeen, A., Churchil, R.R., Peethambaran, P.A., & Sethilkumar, S. (2009). Effect of dietary inclusion of azolla (Azolla pinnata) on production performance of broiler chicken. Indian Journal of Poultry Science, 44, 195-198. http://14.139.185.57:8080/jspui/handle/123456789/5736

Balarak, D., Al-Musawi, T. J., Mohammed, I. A., & Abasizadeh, H. (2020). The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and an economical biosorption agent. SN Applied Sciences, 2, 1-11. https://doi.org/10.1007/s42452-020-2841-x

Bhatt, N., Chandra, R., Kumar, S., Singh, K., & Pratap, N. (2020). Nutritive analysis of Azolla pinnata and its cultivation during winter season. International Journal of Current Microbiology and Applied Sciences, 9(3), 2012-2018. http://dx.doi.org/10.20546/ijcmas.2020.903.233

Bianchi, E., Biancalani, A., Berardi, C., Antal, A., Fibbi, D., Coppi, A., ... & Gonnelli, C. (2020). Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Science of the Total Environment, 746, 141219. https://doi.org/10.1016/j.scitotenv.2020.141219

Bora, K. S., Kumar, A., & Bisht, G. (2018). Evaluation of antimicrobial potential of successive extracts of Ulmus wallichiana Planch. Journal of Ayurveda and Integrative Medicine, 9(3), 190-194. https://doi.org/10.1016/j.jaim.2017.02.009

Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Chatterjee, A., Sharma, P., Ghosh, M.K., Mandal, M., & Roy, P.K. (2013). Utilization of Azolla microphylla as feed supplement for crossbred cattle. International Journal of Agriculture and Food Science and Technology, 4(3), 207-214.

Da Silva, M. E. J., Mathe, L.O.J., Van Rooyen, I. L., Brink, H. G., & Nicol, W. (2022). Optimal Growth Conditions for Azolla pinnata R. Brown: Impacts of Light Intensity, Nitrogen Addition, pH Control, and Humidity. Plants, 11(8), 1048. https://doi.org/10.3390/plants11081048

Dutt Choudhary, S. D., Choudhary, S., Yadav, P., & Kumawat, M. (2020). Evaluation of Nutritive Value of Azolla pinnata. Grassland production and utilization, ID: 1483.

Efstratiou, E., Hussain, A. I., Nigam, P. S., Moore, J. E., Ayub, M. A., & Rao, J. R. (2012). Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complementary Therapies in Clinical Practice, 18(3), 173-176. https://doi.org/10.1016/j.ctcp.2012.02.003

Elrasoul, A. S. A., Mousa, A. A., Orabi, S. H., Mohamed, M. A. E. G., Gad-Allah, S. M., Almeer, R., ... & Eldaim, M. A. A. (2020). Antioxidant, anti-inflammatory, and anti-apoptotic effects of Azolla pinnata ethanolic extract against lead-induced hepatotoxicity in rats. Antioxidants, 9(10), 1014. https://doi.org/10.1016/j.ctcp.2012.02.003

Farook, M. A., Mohamed, H. M., Kumar, G. S., Subash, S., Paranjothi, M., Naveez, V. M., ... & Ahmed, I. A. (2019). Phytochemical screening, Antibacterial and Antioxidant activity of Azolla pinnata. International Journal of Research and Analytical Reviews, 6(2), 640-647.

Gregory, M. W. (1997). Azolla: A Review of Its Biology and Utilization. Botanical Review, 63(1), 1–26. http://www.jstor.org/stable/4354285

Jafri, L., Saleem, S., Ullah, N., & Mirza, B. (2014). In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch. Arabian Journal of Chemistry, 5, 002. https://doi.org/10.1016/j.arabjc.2014.05.002

Kosalec, I., Bakmaz, M., Pepeljnjak, S., & Vladimir-Kneevi, S. (2004). Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharmaceutica, 54, 65-72. https://urn.nsk.hr/urn:nbn:hr:163:570058

Kösesakal, T., & Yıldız, M. (2019). Growth performance and biochemical profile of Azolla pinnata and Azolla caroliniana grown under greenhouse conditions. Archives of Biological Sciences, 71(3), 475-482. https://doi.org/10.2298/ABS190131030K

Kumar, M., Dhuria, R. K., Jain, D., Sharma, T., Nehra, R., & Prajapat, U. K. (2018). A nutritional evaluation of Azolla (Azolla pinnata) as feed supplement. Veterinary Practitioner, 19(1).

Lumpkin, T. A., & Plucknett, D. L., (1980). Azolla: botany, physiology, and use as a green manure. Economic Botany, 34, 111-153. https://doi.org/10.1007/BF02858627

Mishra, D. B., Roy, D., Kumar, V., Bhattacharyya, A., Kumar, M., Kushwaha, R., & Vaswani, S. (2016). Effect of feeding different levels of Azolla pinnata on blood biochemicals, hematology and immunocompetence traits of Chabro chicken. Veterinary World, 9(2), 192. https://doi.org/10.1007/BF02858627

Mishra, S., Khune, V. N., Bara, S., & Banjara, S. (2013). Nutritional evaluation of Azolla pinnata. Science and Technology, 4(3), 207-214.

Mithraja, M. J., Marimuthu, J., Mahesh, M., Paul, Z. M., & Jeeva, S. (2011). Phytochemical studies on Azolla pinnata R. Br., Marsilea minuta L. and Salvinia molesta Mitch. Asian Pacific Journal of Tropical Biomedicine, 1(1), S26-S29. https://doi.org/10.1016/S2221-1691(11)60116-0

Naghipour, D., Ashrafi, S. D., Gholamzadeh, M., Taghavi, K., & Naimi-Joubani, M. (2018). Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: A dataset. Data in Brief, 21, 1409-1414. https://doi.org/10.1016%2Fj.dib.2018.10.111

Noor Nawaz, A. S., Syed, J., Dileep, N., Rakesh, K. N., & Prashith Kekuda, T. R. (2014). Antioxidant activity of Azolla pinnata and Azolla rubra–A comparative study. Scholars Academic Journal of Biosciences, 2(10), 719-723. https://doi.org/10.4314/star.v3i3.21

Parashuramulu, S., Swain, P.S., & Nagalakshmi D. (2013). Protein fractionation and in vitro digestibility of Azolla in ruminants. Online Journal of Animal and Feed Research, 3(3), 129-132. https://ojafr.com/main/attachments/article/95/Online%20J.%20Anim.%20Feed%20Res.,%203%20(3)%20129-132.pdf

Park, H., & Song, U. (2017). Microcosm investigation of growth and phytoremediation potential of Azolla japonica along nitrogen gradients. International Journal of Phytoremediation, 19(10), 863-869. https://doi.org/10.1080/15226514.2017.1290582

Pereira, A. L., Bessa, L. J., Leão, P. N., Vasconcelos, V., & Martins da Costa, P. (2015). Bioactivity of Azolla aqueous and organic extracts against bacteria and fungi. Symbiosis, 65, 17-21. https://doi.org/10.1007/s13199-015-0316-4

Qiu, Y. L., & Yu, J. (2003). Azolla—a model organism for plant genomic studies. Genomics, proteomics & Bioinformatics, 1(1), 15-25. https://doi.org/10.1016/S1672-0229(03)01004-0

Querubin, L.J., Alcantara, P.F., and Princesa, A.O. (1986). Chemical composition of three Azolla species (A. caroliniana, A. microphylla and A. pinnata) and feeding value of Azolla meal (A. microphylla) in broiler rations II. Philippine Agriculture, 69, 479-490. https://cir.nii.ac.jp/crid/1572261550404183168

Raja, W., Rathaur, P., John, S. A., & Ramteke, P. W. (2012). Azolla: An aquatic pteridophyte with great potential. International Journal of Research in Biological Sciences, 2(2), 68-72. https://api.semanticscholar.org/CorpusID:13332840

Rezooqi, A. M., Mouhamad, R. S., & Jasim, K. A. (2021). The potential of Azolla filiculoides for in vitro phytoremediation of wastewater. IOP Publishing. In Journal of Physics: Conference Series, 1853(1), 012014. https://dx.doi.org/10.1088/1742-6596/1853/1/012014

Sachdeva, S., & Sharma, A. (2012). Azolla: role in phytoremediation of heavy metals. Int. J. Eng. Sci., 1(2277), 9698. http://dx.doi.org/10.13140/RG.2.1.1276.0407

Sadhu, S., Karmakar, T., Chatterjee, A., Kumari, U., Mondal, P., Sarka, S., Sur, T., & Tarafdar, S. (2022). Determination of the antagonistic efficacy of silver nanoparticles against two major strains of Mycobacterium tuberculosis. International Journal of Experimental Research and Review, 29, 67-72. https://doi.org/10.52756/ijerr.2022.v29.007

Sarkar, B., Bhattacharya, P., Yen Chen, C., Maity, J., & Biswas, T. (2022). A comprehensive characterization and therapeutic properties in ripened Noni fruits (Morinda citrifolia L.). International Journal of Experimental Research and Review, 29, 10-32. https://doi.org/10.52756/ijerr.2022.v29.002

Sarojini, G., Kannan, P., Rajamohan, N., & Rajasimman, M. (2023). Bio-fabrication of porous magnetic Chitosan/Fe3O4 nanocomposite using Azolla pinnata for removal of chromium-parametric effects, surface characterization and kinetics. Environmental Research, 218, 114822. http://dx.doi.org/10.1016/j.envres.2022.114822

Sathammaipriya, N., Thamilmaraiselvi, B., Steffi, P. F., & Sangeetha, K. (2018). Investigation of phytochemical constituents in Azolla microphylla for antibacterial activity. National Journal of Physiology, Pharmacy and Pharmacology, 8(11), 1500-1504. https://dx.doi.org/10.5455/njppp.2018.8.0310430072018

Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical reviews in food science and nutrition, 45(4), 287-306. https://doi.org/10.1080/1040869059096

Sharma, K., Saxena, P., & Kumari, A. (2023). Phytoremediation of Heavy Metals by Azolla filiculoides Lam. From Fly Ash Polluted Water Bodies. Water, Air, & Soil Pollution, 234(7), 419. http://dx.doi.org/10.1007/s11270-023-06423-4

Shi, D.J., & Hall, D.O. (1988). The Azolla-Anabaena association: historical perspective, symbiosis and energy metabolism. The Botanical Review, 54, 353-386. https://www.jstor.org/stable/4354119

Sreenath, K. B., Sundaram, S., Gopalakrishnan, V. K., & Poornima, K. (2016). Quantitative phytochemical analysis, in vitro antioxidant potential and gas chromatography-mass spectrometry studies in ethanolic extract of Azolla microphylla. Asian Journal of Pharmaceutical and Clinical Research, pp. 318-323.

Sudan, R., Bhagat, M., Gupta, S., Singh, J., & Koul, A. (2014). Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). BioMed Research International, 1-7. https://doi.org/10.1155/2014/179865

Suresh, A., & Xavier, J. (2023). A pharmacognostic approach, including phytochemical and GC-MS analysis, targeted towards the authentication of Strobilanthes jomyi P. Biju, Josekutty, Rekha & JRI Wood. Plant Science Today, 10(2), 232-246. https://doi.org/10.14719/pst.2104

Tanui, H. K., Hussein, A. A., & Luckay, R. C. (2021). Selective removal of iron (III), lead (II) and copper (II) ions by polar crude phytochemicals recovered from ten South African plants: identification of plant phytochemicals. International Journal of Phytoremediation, 23(7), 755-764. https://doi.org/10.1080/15226514.2020.1857332

Thagela, P., Yadav, R. K., Mishra, V., Dahuja, A., Ahmad, A., Singh, P. K., ... & Abraham, G. (2017). Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. Protoplasma, 254, 303-313. https://doi.org/10.1007/s00709-016-0946-2

Vannini, A., Paoli, L., Vichi, M., Bačkor, M., Bačkorová, M., & Loppi, S. (2018). Toxicity of Diclofenac in the Fern Azolla filiculoides and the Lichen Xanthoria parietina. Bulletin of Environmental Contamination and Toxicology, 100, 430-437. https://doi.org/10.1007/s00128-017-2266-4

Yadav, R. K., Tripathi, K., Ramteke, P. W., Varghese, E., & Abraham, G. (2016). Salinity induced physiological and biochemical changes in the freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana. Plant Physiology and Biochemistry, 106, 39-45. https://doi.org/10.1016/j.plaphy.2016.04.031

Published
2023-12-30
How to Cite
Rajalakshmi, K. S., & Paari, K. (2023). A comprehensive study on the assessment of chemically modified Azolla pinnata as a potential cadmium sequestering agent. International Journal of Experimental Research and Review, 36, 1-19. https://doi.org/10.52756/ijerr.2023.v36.001
Section
Articles