Effect of Cadmium Toxicity on Different Antioxidant Enzymes in Growing Wheat (Triticum aestivum L.) Seedlings

Keywords: Antioxidant enzymes, Cadmium, heavy metal stress, phosphatase enzyme, photosynthetic pigments, Wheat

Abstract

Assessing the impact of Cadmium (Cd) on plant cells requires an understanding of the defensive mechanisms and adaptive responses employed by plants to counteract the deleterious effects of Cd toxicity. Wheat seedlings were grown under different concentrations (0 µM, 100 µM and 500 µM) of Cadmium salt (CdCl2). The growth of metal-treated seedlings was significantly affected. This study evaluated the ecotoxicological effects of two experimental concentrations of Cadmium (100 µM and 500 µM) against water control. It has been examined in recent studies that the toxic effects of Cadmium comprising the variables in fresh weight, dry weight and germination percentage of the wheat seedlings, photosynthesis and enzymatic activities in different stresses after seven days of cadmium exposure on roots and shoots of wheat seedling. Different antioxidant enzyme activities such as catalase (CAT), ascorbic acid oxidase (AOX), catechol peroxidase (CPX), superoxide dismutase (SOD), acid and alkaline phosphatase and inorganic pyrophosphatase have been measured. The various enzyme activities were increased in roots treated with high concentrations (500 µM) of Cadmium but decreased at low concentrations (100 µM) with respect to water control. This result indicated a complex defense mechanism in the root tissues induced by Cadmium. This work provides valuable insights for future research on plant responses to heavy metal stress and advances our understanding of the complex relationship between Cd toxicity and the antioxidant defense system in wheat seedlings.

References

Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Zia-ur-Rehman, Ibrahim, M., Arshad, M., & Qayyum, M. F. (2018). Biochar application increased the growth and yield and reduced Cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148, 825-833. https://doi.org/10.1016/j.ecoenv.2017.11.063

Ahmad, P., Abd-Allah, E. F., Hashem, A., Sarwat, M., &Gucel, S. (2016). Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern& Cross) by up-regulating antioxidative system and secondary metabolites. Journal of Plant Growth Regulation, 35, 936-950. https://doi.org/10.1007/s00344-016-9632-z

Aiqing, Z., Zhang, L., Ning, P., Chen, Q., Wang, B., Zhang, F., Yang, X., & Zhang, Y. (2021). Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Critical Reviews in Food Science and Nutrition, 62(28), 7917-7928. https://doi.org/10.1080/10408398.2021.1920883

Almuwayhi, M. A. (2021). Effect of Cadmium on the molecular and morpho-physiological traits of Pisum sativum L. Biotechnology & Biotechnological Equipment, 35(1), 1374-1384. https://doi.org/10.1080/13102818.2021.1978318

Aprile, A., Sabella, E., Vergine, M., Genga,A., Siciliano, M., Nutricati, E., Rampino, P., De Pascali, M., Luvisi, A., Miceli, A., Negro, C. & De Bellis, L. (2018). Activation of a gene network in durum wheat roots exposed to Cadmium. BMC Plant Biology, 18(1), 1-16. https://doi.org/10.1186/s12870-018-1473-4

Arnon, DI. (1949). Copper enzyme in isolated chloroplast. Plant Physiol., 24, 1−15. https://doi.org/10.1104/pp.24.1.1

Ambrosino, M. L., Martínez, J. M., Busso, C. A., Minoldo, G. V., Torres, Y. A., Ithurrart, L. S., & Cardillo, D. S. (2021). Plant species and defoliation effects on soil nitrogen mineralization in a semiarid rangeland of Argentina. Journal of Soil Science and Plant Nutrition, 21, 2511-2517. https://doi.org/10.1007/s42729-021-00542-9

Bayçu, G., Gevrek-Kürüm, N., Moustaka, J., Csatári, I., Rognes, S. E., & Moustakas, M. (2016). Cadmium-zinc accumulation and photosystem II responses of Noccaeacaerulescens to Cd and Zn exposure. Environmental Science and Pollution Research, 24, 2840-2850. https://doi.org/10.1007/s11356-016-8048-4

Bhattacharya, P. (2015). Transfer of heavy metals from lake water to biota: a potential threat to migratory birds of Mathura lake, West Bengal, India. International Journal of Experimental Research and Review, 1, 1-7. https://doi.org/10.52756/ijerr.2015.v01.001

Bhusare, B. P., John, C. K., Bhatt, V. P., & Nikam, T. D. (2018). In vitro propagation of Digitalis lanata Ehrh. through direct shoot regeneration–A source of cardiotonic glycosides. Industrial Crops and Products, 121, 313-319. https://doi.org/10.1016/j.indcrop.2018.05.019

Casper, T., &Laccoppe, J., (1968). The effect of CCC and AMO- 1618 on growth, catalase, peroxidase, IAA oxidase activity of young barley seedlings. Physiol Plant, 21, 1104−1109.

Chance, B., & Maehly, A.C. (1955). Assay of catalases and peroxidases. Methods in Enzymol., 2, 764−817. https://doi.org/10.1002/9780470110171.ch14

Cui, W., Yao, P., Pan,J., Dai, C., Cao, H., Chen, Z., Zhang, S., Xu, S. & Shen, W. (2020). Transcriptome analysis reveals insight into molecular hydrogen-induced cadmium tolerance in alfalfa: the prominent role of sulfur and (homo) glutathione metabolism. BMC Plant Biology, 20(1), 1-19. https://doi.org/10.1186/s12870-020-2272-2

Davies, B. H. (1965). Analysis of carotene pigments. In: Goodwin TW, editor. Chemistry and Biochemistry of Plant Pigments. New York: Academic Press. p. 489−531.

de Araújo, R. P., de Almeida, A. A. F., Pereira, L. S., Mangabeira, P. A., Souza, J. O., Pirovani, C. P., Ahnert, D., & Baligar, V. C. (2017). Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety, 144, 148-157. http://dx.doi.org/10.1016/j.ecoenv.2017.06.006

Dinneny, J. R. (2019). Developmental responses to water and salinity in root systems. Annual Review of Cell and Developmental Biology, 35, 239-257.https://doi.org/10.1146/annurev-cellbio-100617-062949

Głowacka, K., Źróbek-Sokolnik, A., Okorski, A., & Najdzion, J. (2019). The effect of Cadmium on the activity of stress-related enzymes and the ultrastructure of pea roots. Plants, 8(10), 413. https://doi.org/10.3390/plants8100413

Gubrelay, U., Agnihotri, R. K., Shrotriya, S., & Sharma, R. (2015). Effect of Lead stress on phosphatase activity and reducing power assay of Triticum aestivum. Cellular and Molecular Biology, 61(3), 57-62. http://dx.doi.org/10.14715/cmb/2015.61.3.12

Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9(3), 303–321. https://doi.org/10.1007/s10311-011-0313-7

Giannopolitis, C.N., & Ries, S. K. (1977). Superoxide dismutases I. Occurrence in higher plants. Plant Physiol., 59, 309−314. https://doi.org/10.1104/pp.59.2.309

Gutiérrez-Martínez, P. B., Torres-Morán, M. I., Romero-Puertas, M. C., Casas-Solís, J., Zarazúa-Villaseñor, P., Sandoval-Pinto, E., & Ramírez-Hernández, B. C. (2020). Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress. Biotecnia, 22(2), 110-118. https://doi.org/10.18633/biotecnia.v22i2.1252

Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, Ma & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887

Hossain, A., Sabagh, A. E., Bhatt, R., Farooq, M., & Hasanuzzaman, M. (2021). Consequences of Salt and Drought Stresses in Rice and Their Mitigation Strategies through Intrinsic Biochemical Adaptation and Applying Stress Regulators. Sustainable Soil and Land Management and Climate Change, 2(2), 156-178. https://doi.org/10.3390/stresses2020012

Karagöz, F. P., & Dursun, A. (2020). Effects of chemical fertilizer and some bacterial formulations on growing medium and plant heavy metal content in poinsettia cultivation. Alinteri Journal of Agriculture Science, 35(1), 84-92. https://doi.org/10.28955/alinterizbd.739438

Kobya, M., Soltani, R. D. C., Omwene, P. I., & Khataee, A. (2020). A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environmental Technology & Innovation, 17, 100519. https://doi.org/10.1016/j.eti.2019.100519

Liu, H., Zhang, C., Wang, J., Zhou, C., Feng, H., Mahajan, M. D., & Han, X. (2017). Influence and interaction of iron and Cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosphere, 171, 240-247. https://doi.org/10.1016/j.chemosphere.2016.12.081

Madhu, N.R., Sarkar, B., Slama, P., Jha, N.K., Ghorai, S.K., Jana, S.K., Govindasamy, K., Massanyi, P., Lukac, N., Kumar, D., Kalita, J.C., Kesari, K.K., & Roychoudhury, S. (2022). Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2022, S. Roychoudhury, K. K. Kesari (eds.), Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, 1391, 33-58. https://doi.org/10.1007/978-3-031-12966-7_3.

Mamun, A. A., Naher, U. A., & Ali, M. Y. (2018). Effect of seed priming on seed germination and seedling growth of modern rice (Oryza sativa L.) varieties. The Agriculturists, 16(1), 34-43. https://doi.org/10.3329/agric.v16i1.37532

Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research,48(1), 1-7. https://doi.org/10.1186/s40659-015-0001-3

Nyoni, N., Ndlovu, E., & Maphosa, M. (2020). Effect of priming regimes on seed germination of field crops. African Crop Science Journal, 28(2), 169-176.https://doi.org/10.4314/acsj.v28i2.3

Olliver, M. (1967). Ascorbic acid estimation. In: Sebrell WH, Harris RS, editors. The Vitamins, New York: Academic Press, pp. 338. https://doi.org/10.1016/0003-2697(92)90131-P

Qayyum, M. F., Zia-ur-Rehman, M., Ali, S., Rizwan, M., Naeem, A., Maqsood, M. A., Khalid, H., Rinklebe, J., & Ok, Y. S. (2017). Residual effects of monoammonium phosphate, gypsum and elemental sulfur on Cadmium Phyto availability and translocation from soil to wheat in an effluent irrigated field. Chemosphere, 174, 515-523. https://doi.org/10.1016/j.chemosphere.2017.02.006

Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C., Zia-ur-Rehman, M., Ahmad, Z. A., Rinklebe, J., Tack, F. & Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of Cadmium in vegetables. Chemosphere, 182, 90-105. https://doi.org/10.1016/j.chemosphere.2017.05.013

Romero-Puertas, M. C., Terron-Camero, L. C., Pelaez-Vico, M. A., Olmedilla, A., & Sandalio, L. M. (2019). Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environmental and Experimental Botany, 161, 107-119. https://doi.org/10.1016/j.envexpbot.2018.10.012

Sabella, E., Aprile, A., Tenuzzo, B. A., Carata, E., Panzarini, E., Luvisi, A., Bellis, L.D. & Vergine, M. (2022). Effects of Cadmium on root morpho-physiology of durum wheat. Frontiers in Plant Science, 13, 936020. https://doi.org/10.3389/fpls.2022.936020

Saha, J., Dutta, M., & Biswas, A. K. (2017). Influence of arsenate and phosphate on the regulation of growth and TCA Cycle in the rice (Oryza sativa L.) Cultivars IR 64 and Nayanmani. American Journal of Plant Sciences, 08(08), 1868–1887. https://doi.org/10.4236/ajps.2017.88127

Shanmugaraj, B. M., Malla, A., & Ramalingam, S. (2019). Cadmium stress and toxicity in plants: an overview. Cadmium Toxicity and Tolerance in Plants, 1-17. https://doi.org/10.1016/B978-0-12-814864-8.00001-2

Shanying, H. E., Xiaoe, Y. A. N. G., Zhenli, H. E., & Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere, 27(3), 421-438. https://doi.org/10.1016/S1002-0160(17)60339-4

Shiyu, Q. I. N., Hongen, L. I. U., Zhaojun, N. I. E., Rengel, Z., Wei, G. A. O., Chang, L. I., & Peng, Z. H. A. O. (2020). Toxicity of Cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere, 30(2), 168-180. https://doi.org/10.1016/S1002-0160(20)60002-9

Surinaidu, L., Nandan, M. J., Sahadevan, D. K., Umamaheswari, A., & Tiwari, V. M. (2021). Source identification and management of perennial contaminated groundwater seepage in the highly industrial watershed, south India. Environmental Pollution, 269, 116165. https://doi.org/10.1016/j.envpol.2020.116165

Xiao, X., Dufek, J., & Murphy, R. R. (2021). Autonomous visual assistance for robot operations using a tethered uav. In Field and Service Robotics: Results of the 12th International Conference, Springer Singapore. pp. 15-29. http://dx.doi.org/10.1007/978-981-15-9460-1_2

Younas, S., Rizvi, H., Ali, S., & Abbas, F. (2020). Irrigation of Zea mays with UASB-treated textile wastewater; effect on early irrigation of Zea mays with UASB-treated textile wastewater; effect on early growth and physiology. Environmental Science and Pollution Research, 27, 15305-15324. https://link.springer.com/article/10.1007/s11356-020-07948-5

Published
2023-12-30
How to Cite
Ghosh, R., Basak, P., Ghosh, A., & Choudhury, B. (2023). Effect of Cadmium Toxicity on Different Antioxidant Enzymes in Growing Wheat (Triticum aestivum L.) Seedlings. International Journal of Experimental Research and Review, 36, 198-208. https://doi.org/10.52756/ijerr.2023.v36.020
Section
Articles