Efficacy of Photorhabdus as a Promising Entomopathogenic Bacteria in the Eco-Friendly Biocontrol of White Grub Larvae

  • Kranti Kakade Agricultural Microbiology Section, Vasantdada Sugar Institute, Manjari Budruk, Haveli, Pune- 412307, Maharashtra, India https://orcid.org/0009-0007-2977-2724
  • Rajashree Patwardhan Department of Microbiology, Haribhai V. Desai College of Arts, Science and Commerce, Pune-411002, Maharashtra, India https://orcid.org/0009-0007-2977-2724
  • Girish Pathade Krishna Institute of Allied Sciences, Malkapur, Karad, Satara-415539, Maharashtra, India https://orcid.org/0009-0007-2977-2724
Keywords: Insecticidal activity, LD50, mortality, Photorhabdus luminescens, White grub

Abstract

White grubs are a major polyphagous pest that imposes damage upon several plant species, mostly by feeding their roots. White grub larvae are one of the hazardous pests found in sugarcane. This problem causes a substantial drop in sugarcane crop productivity every year in India. In this research, white grub larvae were subjected to biocontrol using developed formulations of Photorhabdus bacteria, symbiotically associated with entomopathogenic nematodes under laboratory conditions. The Photorhabdus bacteria isolated from entomopathogenic nematode- Heterorhabditis indica have insecticidal activity towards insect pests by exerting an array of toxic effects. The main insecticidal activity, i.e., chitinase enzyme production by these bacteria, was associated with mortality of insect pests. In the present investigation, chitinase production by Photorhabdus bacteria was determined by DEAE column chromatography. The various bacterial formulations of Photorhabdus were examined for their insecticidal activity against the white grub larvae under laboratory conditions. Mortality of the white grub larvae was observed after 24–48 hours of exposure. The formulations of Photorhabdus showed statistically significant effects on mortality of larvae. The percent mortality of larvae after treatment with formulation 3 was highly significant compared to those treated with formulation 1 and 2. Formulation 3 expressed a significantly lower LD50 value, i.e., 121.31 CFU/mL, over formulations 1 and 2, i.e., 127.34 & 133.56 CFU/mL, respectively. Formulation 3 showed greater efficacy in killing white grub larvae at lower concentrations. The formulation 3 of Photorhabdus bacteria has great potential to kill white grub larvae under laboratory conditions and requires further evaluation for its promising use as a biocontrol agent by pot and field studies.

References

Akeed, Y., Atrash, F., & Naffaa, W. (2020). Partial purification and characterization of chitinase produced by Bacillus licheniformis B307. Heliyon, 6(5), e03858. https://doi.org/10.1016/j.heliyon.2020.e03858

Akhurst, R. J. (1982). Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the Families Heterorhabditidae and Steinernematidae. Journal of General Microbiology, 128, 3061–3065. https://doi.org/10.1099/00221287-128-12-3061

Bowen, D. J., & Ensign, J. C. (1998). Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied and Environmental Microbiology, 64(8), 3029–3035. https://doi.org/10.1128/AEM.64.8.3029-3035.1998

Busby, J. N., Landsberg, M. J., Simpson, R. M., Jones, S. A., Hankamer, B., Hurst, M. R. H., & Lott, J. S. (2012). Structural analysis of Chi1 chitinase from Yen-Tc: the multisubunit insecticidal ABC toxin complex of Yersinia entomophaga. Journal of Molecular Biology, 415(2), 359–371. https://doi.org/10.1016/j.jmb.2011.11.018

Bussaman, P., Sa-Uth, C., Rattanasena, P., & Chandrapatya, A. (2012). Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.). Journal of Zhejiang University-science B (Biomedicine & Biotechnology), 13(4), 261–266. https://doi.org/10.1631/jzus.B1100155

Cabral, C. M., & Cherqui, A. (2004). Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Applied and Environmental Microbiology, 70(7), 3831–3838. https://doi.org/10.1128/AEM.70.7.3831–3838.2004

Chen, G., Zhang, Y., Li, J., Dunphy, G. B., Punja, Z. K., & Webster, J. M. (1996). Chitinase activity ofXenorhabdus and Photorhabdusspecies, bacterial associates of Entomopathogenic nematodes. Journal of Invertebrate Pathology, 68(2), 101–108. https://doi.org/10.1006/jipa.1996.0066

Dudney, R. A. (1997). Use of Xenorhabdus nematophilus IM/1and19061/1for fire ant control (Patent 5616318).

Dunphy, G. B., & Webster, J. M. (1985). Influence of Steinernema feltiae (Filipjev) Wouts, Mracek, Gerdin and Bedding DD136 strain on the humoral and haemocytic responses of Galleria mellonella (L.) larvae to selected bacteria. Parasitology, 91(2), 369–380. https://doi.org/10.1017/S0031182000057437

Gangadhara, N.B., Kalleshwaraswamy, C.M., Maheshwarappa, H.P., Rajkumar, M., Gowdra, N., & Latha, S. (2019). Evaluation of entomopathogenic nematodes for the management of white grub, Leucopholis lepidophora Blanchard (Coleoptera: Scarabaeidae). Journal of Entomology and Zoology Studies, 7(1), 09–13.

Gangwar, M., Singh, V., Pandey, A. K., Tripathi, C., & Mishra, B. (2016). Purification and characterization of chitinase from Streptomyces violascens NRRL B2700. Indian Journal of Experimental Biology, 54, 64–71.

George, O. P. jr., Gerard, M. T., & Roberta, H. (1977). Characteristics of the specific bacterium associated with Heterorhabditis Bacteriophora (Heterorhabditidae: Rhabditida). Nematologica, 23, 97–102. https://doi.org/10.1163/187529277X00273

Gerdes, E. (2015). Photorhabdus Luminescens: Virulent properties and agricultural applications. American Journal of Agriculture and Forestry, 3(5), 171. https://doi.org/10.11648/j.ajaf.20150305.12

Hazir, S., Shapiro-Ilan, D. I., Bock, C. H., Hazir, C., Leite, L. G., & Hotchkiss, M. W. (2016). Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens. Eur. J. Plant Patho., https://doi.org/ 10.1007/s10658-016-0923-9

Jayaraj, J., Radhakrishnan, N. V., Kannan, R., Sakthivel, K., Suganya, D., Venkatesan, S., & Velazhahan, R. (2005). Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum. Biocontrol Science and Technology, 15(1), 55–65. https://doi.org/10.1080/09583150400015920

Kajuga, J., Hategekimana, A., Yan, X., Waweru, B. W., Li, H., Li, K., Yin, J., Cao, L., Karanja, D., Umulisa, C., & Toepfer, S. (2018). Management of white grubs (Coleoptera: Scarabeidae) with entomopathogenic nematodes in Rwanda. Egyptian Journal of Biological Pest Control, 28(1), 2. https://doi.org/10.1186/s41938-017-0003-2

Kaya, H., & Gaugler, R. (1993). Entomopathogenic nematode. Annu. Rev. Entomol., 38, 181–206. https://doi.org/10.1146/annurev.en.38.010193.001145

Lawrence, A. L., & Ramon, G. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218–225.

Li, D.C., Zhang, S.H., Liu, K.Q., & Lu, J. (2004). Purification and partial characterization of a chitinase from the mycoparasitic fungus Trichothecium roseum. J. Gen. Appl. Microbiol., 50(1), 35-9. https://doi.org/10.2323/jgam.50.35.

Liu, J., NanGong, Z., Zhang, J., Song, P., Tang, Y., Gao, Y., & Wang, Q. (2019). Expression and characterization of two chitinases with synergistic effect and antifungal activity from Xenorhabdus nematophila. World Journal of Microbiology and Biotechnology, 35(7), 106. https://doi.org/10.1007/s11274-019-2670-5

Mahar, A. N., Munir, M., & A.Q. Mahar. (2004). Studies of different application methods of Xenorhabdus and Photorhabduscells and their toxin in broth solution to control Locust (Schistocerca gregaria). Asian Journal of Plant Sciences, 3(6), 690–695. https://doi.org/10.3923/ajps.2004.690.695

Mathur, C., Phani, V., Kushwah, J., Somvanshi, V. S., & Dutta, T. K. (2019). TcaB, an insecticidal protein from Photorhabdus akhurstii causes cytotoxicity in the greater wax moth, Galleria mellonella. Pesticide Biochemistry and Physiology, 157, 219–229. https://doi.org/10.1016/j.pestbp.2019.03.019

McMullen II, J. G., & Stock, S. P. (2014). In vivo and In vitro rearing of Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae). Journal of Visualized Experiments, 91, 52096. https://doi.org/10.3791/52096

Mohan, S., Raman, R., & Gaur, H. S. (2003). Foliar application of Photorhabdus luminescens, symbiotic bacteria from entomopathogenic nematode Heterorhabditisindica, to kill cabbage butterfly Pieris brassicae. Current Science, 84(11), 1397.

Ogier, J.C., Pagès, S., Frayssinet, M., & Gaudriault, S. (2020). Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Microbiome, 8(1), 25. https://doi.org/10.1186/s40168-020-00800-5

Palmieri, D., Portillo, E., Sulbarán, Y., Guerra, M., & San-Blas, E. (2019). Biocontrol of Phytophthora root and stem rot disease in papaya (Carica papaya) plants by Photorhabdus, the symbiont bacterium of Heterorhabditis amazonensis. BioControl, 64(5), 595–604. https://doi.org/10.1007/s10526-019-09948-y

Rajagopal, R., & Bhatnagar, R. K. (2002). Insecticidal Toxic Proteins Produced by Photorhabdus luminescens akhurstii, a symbiont of Heterorhabditis indica. Journal of Nematology, 34(1), 23–27.

Ray, L., Panda, A. N., Mishra, S. R., Pattanaik, A. K., Adhya, T. K., Suar, M., & Raina, V. (2019). Purification and characterization of an extracellular thermo-alkali stable, metal tolerant chitinase from Streptomyces chilikensis RC1830 isolated from a brackish water lake sediment. Biotechnology Reports, 21, e00311. https://doi.org/10.1016/j.btre.2019.e00311

Rich, J. T., Neely, J. G., Paniello, R. C., Voelker, C. C. J., Nussenbaum, B., & Wang, E. W. (2010). A practical guide to understanding Kaplan‐Meier curves. Otolaryngology–Head and Neck Surgery, 143(3), 331–336. https://doi.org/10.1016/j.otohns.2010.05.007

Roderer, D., Schubert, E., Sitsel, O., & Raunser, S. (2019). Towards the application of Tc toxins as a universal protein translocation system. Nature Communications, 10(1), 5263. https://doi.org/10.1038/s41467-019-13253-8

Salazar-Gutiérrez, J. D., Castelblanco, A., Rodríguez-Bocanegra, M. X., Teran, W., & Sáenz-Aponte, A. (2017). Photorhabdus luminescens subsp. akhurstii SL0708 pathogenicity in Spodoptera frugiperda (Lepidoptera: Noctuidae) and Galleria mellonella (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 20(4), 1112–1121. https://doi.org/10.1016/j.aspen.2017.08.001

Shrestha, S., & Kim, Y. (2010). Differential pathogenicity of two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata and Xenorhabdus nematophila against the red flour beetle, Tribolium castaneum. Journal of Asia-Pacific Entomology, 13(3), 209–213. https://doi.org/10.1016/j.aspen.2010.04.002

Woodring, J. L. & Kaya, H. K. (1988). Steinernematid and Heterorhabditid nematodes, A Handbook of Techniques. Arkansas Agricultural Experiment Station. Series no. 133, 1-30

Published
2023-11-30
How to Cite
Kakade, K., Patwardhan, R., & Pathade, G. (2023). Efficacy of Photorhabdus as a Promising Entomopathogenic Bacteria in the Eco-Friendly Biocontrol of White Grub Larvae. International Journal of Experimental Research and Review, 35, 149-159. https://doi.org/10.52756/ijerr.2023.v35spl.014