Single Phase Novel H-Type Multilevel Inverter Topology with Optimal Reduction of Power Electronic Devices

  • Samrat Paul Department of Electrical and Electronics Engineering, Swami Vivekananda Institute of Science and Technology, Kolkata-700145, West Bengal, India
  • Sourav Debnath Department of Electrical and Electronics Engineering, Swami Vivekananda Institute of Science and Technology, Kolkata-700145, West Bengal, India https://orcid.org/0000-0001-7583-0381
  • Dipak Kumar Mandal Department of Applied Physics, Rashbehari Siksha Prangan, University of Calcutta, Kolkata-700009, India
  • Bidyut Mahato Department of Electrical Engineering, IIT(ISM), Dhanbad, Jharkhand-826004, India
Keywords: Generalized structure, H-bridge inverter, Multilevel inverter (MLI), Nearest level control (NLC)

Abstract

The research aims to develop a novel H-Type multilevel inverter capable of generating seventeen levels of asymmetric voltage ratios using only nine power semiconductor switches. The flexibility of this topology is that it can be extended to any desired output levels according to various algorithms suggested in this paper. Simulations are conducted using the MATLAB platform to validate the viability of the proposed topology. The results obtained from these simulations convincingly demonstrate the effectiveness of the designed inverter. Specifically, utilizing the first algorithm, voltage levels of 17, 25, 33 and 41 are generated, and various performance parameters are thoroughly examined to establish the efficacy of the topology. This research not only focuses on the development of a novel H-Type multilevel inverter capable of producing seventeen levels of asymmetric voltage ratios with a minimalistic approach of nine power semiconductor switches but also provides a pathway for extension through suggested algorithms. The validation process through MATLAB simulations and the thorough examination of performance parameters underscores the robustness and efficiency of the proposed topology.

References

Abu-rub, H., Member, S., Holtz, J., Rodriguez, J., & Baoming, G. (2010). Medium-Voltage Multilevel Converter-State of the Industrial Applications, IEEE Transactions on Industrial Electronics, 57(8), 2581–2596. https://doi.org/10.1109/TIE.2010.2043039

Alishah, R. S., Hosseini, S. H., Babaei, E., & Sabahi, M. (2017). Optimal Design of New Cascaded Switch-Ladder Multilevel Inverter Structure. IEEE Trans. Ind. Electron., 64(3), 2072–2080. https://doi.org/10.1109/TIE.2016.2627019.

Alishah, R. S., Hosseini, S. H., Babaei, E., & Sabahi, M. (2016). A New General Multilevel Converter Topology Based on Cascaded Connection of Submultilevel Units with Reduced Switching Components, DC Sources, and Blocked Voltage by Switches. IEEE Trans. Ind. Electron., 63(11), 7157–7164. https://doi.org/10.1109/TIE.2016.2592460.

Alishah, S. R., Hosseini, S. H., Babaei, E., & Sabahi, M. (2017). Optimization Assessment of A New Extended Multilevel Converter Topology. IEEE Transactions on Industrial Electronics, 64(6), 4530–4538. https://doi.org/10.1109/TIE.2017.2669885

Agrawal, R., &. Jain, S. (2017). Comparison of reduced part count multilevel inverters (RPC-MLIs) for integration to the grid. Int. J. Electr. Power Energy Syst., 84, 214–224.

https://doi.org/10.1016/j.ijepes.2016.05.011.

Ajami, A., Jannati Oskuee, M. R., Mokhberdoran, A., & Van den Bossche, A. (2014). Developed cascaded multilevel inverter topology to minimise the number of circuit devices and voltage stresses of switches. IET Power Electron., 7(2), 459–466. https://doi.org/10.1049/iet-pel.2013.0080.

Avanaki, H. N., Barzegarkhoo, R., Zamiri, E., Yang, Y., & Blaabjerg, F. (2019). Reduced switch count structure for symmetric multilevel inverters with a novel switched-DC-source submodule. IET Power Electronics, 12(2), 311–321.

Arun, N., & Noel, M. M. (2018). Crisscross switched multilevel inverter using cascaded semi-half-bridge cells. IET Power Electron., 11(1), 23–32, 2018. https://doi.org/10.1049/iet-pel.2016.0644.

Ahrabi, R., Farakhor, A., Najafi Ravadanegh, S., & Ardi, H. (2015). Symmetric and asymmetric transformer based cascaded multilevel inverter with minimum number of components. IET Power Electron., 8(6), 1052–1060. https://doi.org/10.1049/iet-pel.2014.0378.

Carpita, M., Moser, D., Marchesoni, M. & Pellerin, M. (2008). Multilevel converter for traction applications: Small-scale prototype tests results. IEEE Trans. Ind. Electron., 55(5), 2203–2212. https://doi.org/10.1109/TIE.2008.918645.

Dahidah, M. S. A., Konstantinou, G., & Agelidis, V. G. (2015). A Review of Multilevel Selective

Harmonic Elimination PWM: Formulations, Solving Algorithms, Implementation and Applications. IEEE Trans. Power Electron., 30(8), 4091–4106. https://doi.org/10.1109/TPEL.2014.2355226.

Dhanamjayulu, C., Rudravaram, V., & Kumar, S. P. (2022). Design and implementation of a novel 35-level inverter topology with reduced switch count. Electric Power Systems Research, 212, 108641. https://doi.org/10.1016/j.epsr.2022.108641

Franquelo, L. G., J. Rodriguez, J., Leon, J. I., Kouro, S., Portillo, R., & Prats, M. M. (2008). The age of multilevel converters arrives. IEEE Ind. Electron. Mag., 2(2), 28–39, 2008. https://doi.org/10.1109/MIE.2008.923519.

Gautam, S. P., Gupta, S., & Sahu, L. K. (2016). Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electron., 9(4), 698–709. https://doi.org/10.1049/iet-pel.2015.0176.

Gautam, S. P., Kumar, L., & Gupta, S. (2018). Single-phase multilevel inverter topologies with

self-voltage balancing capabilities. IET Power Electron., 11(5), 844–855. https://doi.org/10.1049/iet-pel.2017.0401.

Jha, K. K., Mahato, B., Prakash, P., & Jana, K. C. (2016). Hardware implementation of single phase power factor correction system using micro-controller. Int. J. Power Electron. Drive Syst., 7(3), 790–799. https://doi.org/10.11591/ijpeds.v7.i3.pp790-799.

Kumar, C., Mahato, B., Raushan, R., Maity, T., & Jana, K. C. (2016). Comprehensive Study of various configurations of three-phase Multilevel inverter for different levels. 3rd Int'l Conf. on Recent Advances in Information Technology I RAIT-2016I, 310-315. https://doi.org/10.1109/RAIT.2016.7507922.

Kumar, V.A.G., & Reddy, D. M. (2023). TLBO-trained ANN-based Shunt Active Power Filter for Mitigation of Current Harmonics. International Journal of Experimental Research and Review, 34(Special Vo), 11-21. https://doi.org/10.52756/ijerr.2023.v34spl.002

Lee, S. S. (2018). Single-Stage Switched-Capacitor Module (S3CM) Topology for Cascaded Multilevel Inverter. IEEE Transactions on Power Electronics, 33(10), 8204–8207. https://doi.org/10.1109/TPEL.2018.2805685

Mahato, B., Majumdar, S., & Jana, K. C. (2018). Carrier-Based PWM Techniques for Multi-Level

Inverters: A Comprehensive Performance Study. J. Sci. PART A Eng. Innov., 5(3), 101–111.

Mahato, B., Raushan, R., & Jana, K. C. (2016). Comparative Study of Asymmetrical Configuration of Multilevel Inverter for Different Levels, 3rd International Conference on Recent Advances in Information Technology (RAIT), 300–303. https://doi.org/10.1109/RAIT.2016.7507920

Mahato, B., Mittal, S., Majumdar, S., Jana, K. C., & Nayak, P. K. (2019). Multilevel Inverter with

Optimal Reduction of Power Semi-conductor Switches. Renewable Energy and its Innovative Technologies, Springer Singapore, 31–50.

Mahato, B., Raushan, R., & Jana, K. C. (2017). Modulation and control of multilevel inverter for an open-end winding induction motor with constant voltage levels and harmonics. IET Power Electron., 10(1), 71–79. https://doi.org/10.1049/iet-pel.2016.0105.

Mahato, B., Jana, K. C. & Thakura, P. R. (2018). Constant V / f Control and Frequency Control of Isolated Winding Induction Motor Using Nine-Level Three-Phase Inverter. Iran. J. Sci. Technol. Trans. Electr. Eng., 6(1), 1–13. https://doi.org/10.1007/s40998-018-0064- 6.

Malekjamshidi, Z., Jafari, M., Islam, R., Zhu, J., & Member, S. (2014). A Comparative Study on Characteristics of Major Topologies of Voltage Source Multilevel Inverters. 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), pp. 612-617. https://doi.org/10.1109/ISGT-Asia.2014.6873862

Mukherjee, A., Mahato, B., Sinha, A., & Jana, K. C. (2017). Comparative performance analysis of PV based grid-tied single phase asymmetrical multilevel inverter using different PWM techniques. J. Electr. Eng., 17(1) 132-141.

Meshram, P. M., & Borghate, V. B. (2015). A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC). IEEE Trans. Power Electron., 30(1), 450–462. https://doi.org/10.1109/TPEL.2014.2317705

Nanda, L., Dasgupta, A., & Rout, U. K. (2017). Hybrid Symmetrical Cascaded Multilevel Inverter having reduced number of Switches and DC Sources. International Journal of Applied Engineering Research, 12(15), 5151-5155.

Naderi, R., & Rahmati, A. (2008). Phase-shifted carrier PWM technique for general cascaded inverters. IEEE Trans. Power Electron., 23(3), 1257–1269. https://doi.org/10.1109/TPEL.2008.921186.

Omer, P., Kumar, J., & Surjan, B. S. (2018). A New Multilevel Inverter Topology with Reduced Switch Count and Device Stress, 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, pp. 1-6. https://doi.org/10.1109/UPCON.2018.8596999.

Paul, S., Jana, K. C., Majumdar, S., Pal, P. K., & Mahato, B. (2022). Performance Analysis of a Multi-module Staircase (MM-STC) Type Multilevel Inverter with Reduced Component Count and Improved Efficiency. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(6), 6619-6633. https://doi.org/10.1109/JESTPE.2021.3133346

Rodriguez, J., Bernet, S., Steimer, P. K., & Lizama, I. E. (2010). A Survey on Neutral Point- Clamped Inverters. IEEE Trans. Ind. Electron., 57(7), 2219–2230. https://doi.org/10.1109/TIE.2009.2032430.

Raushan, R., Mahato, B., & Jana, K. C. (2018). Optimum structure of a generalized three-phase reduced switch multilevel inverter. Electr. Power Syst. Res., 157, 10– 19. https://doi.org/10.1016/j.epsr.2017.11.017.

Rashid, M. H. (2004). Power electronics: Circuits, devices and application.

Rodríguez, J., Lai, J. S., & Peng, F. Z. (2002). Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electron., 49(4), 724–738. https://doi.org/10.1109/TIE.2002.801052.

Rodríguez, J., Bernet, S., Wu, B., Pontt, J. O., & Kouro, S. (2007). Multilevel voltage-source-converter topologies for industrial medium-voltage drives, IEEE Trans. Ind. Electron., 54(6), 2930–2945. https://doi.org/10.1109/TIE.2007.907044.

Samadaei, E., Sheikholeslami, A., Gholamian, S. A., & Adabi, J. (2018). A Square T-Type (ST- Type) Module for Asymmetrical Multilevel Inverters. IEEE Trans. Power Electron., 33(2), 987–996. https://doi.org/10.1109/TPEL.2017.2675381.

Saeedian, M., Adabi, J., & Hosseini, S. M. (2017). Cascaded multilevel inverter based on symmetric–asymmetric DC sources with reduced number of components. IET Power Electronics, 10(12), 1468–1478.

Samadaei, E., Gholamian, S. A., Sheikholeslami, A., & Adabi, J. (2016). An Envelope Type (E-Type) Module: Asymmetric Multilevel Inverters with Reduced Components, IEEE Trans. Ind. Electron., 63(11), 7148–7156. https://doi.org/10.1109/TIE.2016.2520913.

Samadaei, E., Kaviani, M., & Bertilsson, K. (2019). A 13-levels module (KType) with two DC sources for multilevel inverters. IEEE Transactionson Industrial Electronics, 66(7), 5186–5196.

Sumit, R. A., & Kumar, S. (2021). A novel generalised topology of a reduced part count multilevel inverter with level boosting network to improve the quality of supply. Global Transitions Proceedings, 2(2), 238-245. https://doi.org/10.1016/j.gltp.2021.08.019

Tolbert, L. M., Peng, F. Z., & Habetler T. G. (1999). Multilevel converters for large electric drives. IEEE Trans. Ind. Appl., 35(1), 36–44. https://doi.org/10.1109/28.740843

Published
2023-12-30
How to Cite
Paul, S., Debnath, S., Mandal, D., & Mahato, B. (2023). Single Phase Novel H-Type Multilevel Inverter Topology with Optimal Reduction of Power Electronic Devices. International Journal of Experimental Research and Review, 36, 347-358. https://doi.org/10.52756/ijerr.2023.v36.031
Section
Articles