In Silico Molecular Docking Analysis of Flavone and Phytol from Vilvam (Aegle marmelos) against Human Hepatocellular Carcinoma (HepG-2) Mitochondrial Proteins
DOI:
https://doi.org/10.52756/ijerr.2023.v36.035Keywords:
Aegle marmelos, Flavone, HepG-2, Mitochondrial Proteins, PhytolAbstract
The vilvam fruit is an important source of phyto compounds, that are a good natural resource for curing several health illnesses. Annually, around 906,000 new cases and 830,000 deaths worldwide are attributed to liver cancer, making it one of the most prevalent malignant tumors. Humans' physical and mental well-being, as well as their social and economic advancement, are seriously threatened by and challenged by liver cancer. The molecular interactions between biological chemicals originating from plants and proteins relevant to apoptosis, however, are not well documented in research. Therefore, the objective of this study was to determine the potential biological compounds of flavone and phytol found in the vilvam fruit and examine their interactions with the targeted apoptotic proteins using molecular docking simulation towards liver cancer mitochondrial signalling pathway proteins such as Caspase 3, Caspase 9, Bax, Bcl-2, PARP, p53, and Cytochrome C. Flavone showed a docking score with Caspase 3 (-10.51 kcal/mol), Bax (-9.49 kcal/mol), Bcl-2 (-11.10 kcal/mol), PARP (-10.22 kcal/mol) and p53 (-10.36 kcal/mol), but could not bind with Caspase 9 and Cytochrome C, while phytol could not bind with all the apoptotic proteins. The consequence of Lipinski rule recommends that flavone is the best curative drug for liver cancer. Docking results verify the application of flavone as a potential and natural therapeutic agent to treat diseases.
References
Adams, J. M. (2003). Ways of dying: Multiple pathways to apoptosis. Genes & Development, 17(20), 2481–2495. https://doi.org/10.1101/gad.1126903
Ashok, K., Sivakumari, K., Sultana, M. & Rajesh, S. (2021). In silico molecular docking and ADME potential of kiwi fruit isolated compounds against apoptotic proteins. International Journal of Biological, Pharmaceutical Allied Sciences, IJBAPS, 10(10), 3607–3619. https://doi.org/10.31032/IJBPAS/2021/10.10.5671
Bhardwaj, R.L., & Nandal, U. (2015). Nutritional and therapeutic potential of bael (Aegle marmelos Corr.) fruit juice: a review. Nutr. Food Sci., 45, 895-919. https://doi.org/10.1108/NFS-05-2015-0058/FULL/XML
Bheeman, D., Krishna, J., Sugumaran, S., Mathan, R., Dakshanamurthy, S., Rajamani, R.K., Bellan, C.S. (2014). Indium titanium oxide nanoparticles induced hepatotoxicity: Role of Aegles marmelos as a hepatoprotectant. J. Bionanosci., 8(2014), 183-189. https://doi.org/10.1166/JBNS.2014.1219
Browning, D. D., Kwon, I. K., & Wang, R. (2010). cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment. Future Medicinal Chemistry, 2(1), 65–80. https://doi.org/10.4155/fmc.09.142
Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol Sci., 21(9), 3233.
Chirumbolo, S. (2012). Plant phytochemicals as new potential drugs for immune disorders and cancer therapy: Really a promising path? Journal of the science of food and agriculture, 92(8), 1573–1577. https://doi.org/10.1002/jsfa.5670
Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in pharmacology, 10, 1614. https://doi.org/10.3389/fphar.2019.01614
Choudhary, S., Chaudhary, G., & Kaurav, H. (2021). Aegle Marmelos (Bael Patra): An ayurvedic plant with ethnomedicinal value. Int. J. Res. Ayurveda Pharm., 12(2021), 147-156. https://doi.org/10.7897/2277-4343.120392
Chuma, M., Terashita, K., & Sakamoto, N. (2015). New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions. Hepatol Res., 45(10), E1–E11. https://doi.org/10.1111/hepr.12459
Corson, T. W., & Crews, C. M. (2007). Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell, 130(5), 769–774. https://doi.org/10.1016/j.cell.2007.08.021
de Araújo Júnior, R. F., de Souza, T. P., Pires, J. G., Soares, L. A., de Araújo, A. A., Petrovick, P. R., Mâcedo, H. D., de Sá Leitão Oliveira, A. L., & Guerra, G. C. (2012). A dry extract of Phyllanthus niruri protects normal cells and induces apoptosis in human liver carcinoma cells. Experimental biology and medicine (Maywood, N.J.), 237(11), 1281–1288. https://doi.org/10.1258/ebm.2012.012130
Elmore S. (2007). Apoptosis: A review of programmed cell death. Toxicologic pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337
Evans T. (2005). Chemotherapy in advanced non-small cell lung cancer. Seminars in Respiratory and Critical Care Medicine, 26(3), 304–313. https://doi.org/10.1055/s-2005-871989
Flora Priyadarshini, J., Sivakumari, K., Ashok, K., Jayaprakash, P., & Rajesh, S. (2018). GC-MS analysis for identification of active compounds in propolis and molecular docking studies of selected compounds against apototic proteins (Caspase-3, Caspase-9 and Β-Actin). Journal of Biological Chemistry and Research, 35(2), 349–358.
Goldar, S., Khaniani, M. S., Derakhshan, S. M., & Baradaran, B. (2015). Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pacific journal of cancer prevention : APJCP, 16(6), 2129–2144. https://doi.org/10.7314/apjcp.2015.16.6.2129
Hassan, N.M., Alhossary, A.A., Mu, Y., & Kwoh, C.K. (2017). Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration. Sci Rep., 7(1), 15451.
HemaIswarya, S., & Doble, M. (2006). Potential synergism of natural products in the treatment of cancer. Phytotherapy Research : PTR, 20(4), 239–249. https://doi.org/10.1002/ptr.1841
Hemalatha, G., Sivakumari, K., Rajesh, S., & Shyamala Devi, K. (2020b). In silico molecular docking studies of Muricin J, Muricin K and Muricin L compound from A. muricata against apoptotic proteins (Caspase-3, Caspase-9 and β-Actin). Inoriginal International Journal of Sciences, 7(5), 1–4.
Hemalatha, G., Sivakumari, K., Rajesh, S., & Shyamala, D. K. (2020a). Phytochemical profiling, the anticancer and apoptotic activity of Graviola (Annona muricata) fruit extract against human hepatocellular carcinoma (HepG-2) cells. Int. J. Zool. Appl. Biosci., 5(1), 32-47.
Hindson, J. (2020). Combined TACE and sorafenib for HCC treatment. Nat Rev Gastroenterol Hepatol., 17(2), 66. https://doi.org/10.1038/s41575-020-0265-0
Izzo, F., Granata, V., Grassi,. R., Fusco, R., Palaia, R., & Delrio, P. (2019). Radiofrequency ablation and microwave ablation in liver tumors: An update. Oncologist, 24(10), e990–e1005. https://doi.org/10.1634/theoncologist.2018-0337
Jayameena, P., Sivakumari, K., Ashok, K., & Rajesh, S. (2018). In silico molecular docking studies of rutin compound against apoptotic proteins (Tumor Necrosis Factor, Caspase-3, NF-Kappa-B, P53, Collagenase, Nitric oxide synthase and Cytochrome C). Journal of Cancer Research and Treatment, 6(2), 28–33. https://doi.org/10.12691/jcrt-6-2-1
Jayaprakash, P., Sivakumari, K., Ashok, K., & Rajesh, S. (2018). In silico molecular docking of alginic acid and fucoidan compound present in S. wightii against apoptotic proteins (Caspase-3, Caspase-9 and β-Actin). International Journal of Biology, Pharmacy and Allied Sciences, 7(8), 1551–1565. https://doi.org/10.31032/IJBPAS/2018/7.8.4513
Kardashian, A., Florman, S.S., Haydel, B., Ruiz, R.M., Klintmalm, G.B., Lee, D.D. (2020). Liver transplantation outcomes in a U.S. multicenter cohort of 789 patients with hepatocellular carcinoma presenting beyond Milan criteria. Hepatology, 72(6), 2014–28. https://doi.org/10.1002/hep.31210
Karthika, S., Sivakumari, K., Rajesh, S., Ashok, K., & Shyamala Devi, K. (2018). In silico molecular prediction of ascorbic acid, betalain and gallic acid from Hylocereus undatus against apoptotic proteins (Caspase-3, Caspase-9 and β-Actin). Journal of Pharmaceutical and Scientific Innovation, 7(6), 215–220. https://doi.org/10.7897/2277-4572.076110
Kim, A., Im, M., Yim, N. H., Kim, T., & Ma, J. Y. (2014). A novel herbal medicine, KIOM-C, induces autophagic and apoptotic cell death mediated by activation of JNK and reactive oxygen species in HT1080 human fibrosarcoma cells. PloS one, 9(5), e98703. https://doi.org/10.1371/journal.pone.0098703
Kiyohara, H., Matsumoto, T., & Yamada, H. (2004). Combination effects of herbs in a multi-herbal formula: Expression of Juzen-taiho-to's immuno-modulatory activity on the intestinal immune system. Evidence-based Complementary and Alternative Medicine : eCAM, 1(1), 83–91. https://doi.org/10.1093/ecam/neh004
Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. International Journal of Experimental Research and Review, 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015
Lipinski, C.A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol., 1(4), 337-341.
Maddika, S., Ande, S. R., Panigrahi, S., Paranjothy, T., Weglarczyk, K., Zuse, A., Eshraghi, M., Manda, K. D., Wiechec, E., & Los, M. (2007). Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 10(1-2), 13–29. https://doi.org/10.1016/j.drup.2007.01.003
Mala SK, Priya AP, Bincy B and Nazeem PA. (2015). Bioactive compounds to target anti apoptotic proteins- Bcl 2 and Bcl Xl an in silico approach. Int. J. Pharm. Sci. Res., 6(7), 3034-3043. https://dx.doi.org/10.13040/IJPSR.0975:8232.6(7)3034-43
Mohamad Sitheek, A., Sivakumari, K., Rajesh, S., & Ashok, K. (2020). Molecular docking studies of apoptotic proteins Caspase-3, Caspase-9, Bax, Bcl-2 and Bcl-Xl with ethyl (2s)-2-methylbutanoate and 1-(ethylsulfanyl)ethane-1-thiol from durian fruit. International Journal of Biological, Pharmaceutical and Allied Sciences, 9(9), 2513¬–2523. https://doi.org/10.31032/IJBPAS/2020/9.9.5372
Nandana, P.I., Rasyid, H., Prihantono., Yustisia, I., Hakim, L. (2023). Molecular docking studies of Brucein D as a potential inhibitor of the Bcl-2 anti-apoptotic protein. Bali Medical Journal 12(2): 2148-2152. https://doi.org/10.15562/bmj.v12i2.4414
Padmavathy, K., Sivakumari, K., & Rajesh, S. (2022). Exploring squalene and rhodoxanthin from Hylocereus undatus as a therapeutic agent for the treatment of human liver cancer using docking analysis. Chettinad Health City Medical Journal, 11(2), 24–32. https://doi.org/10.24321/2278.2044.202213
Padmavathy, K., Sivakumari, K., Karthika, S., Rajesh, S., & Ashok, K. (2021). A study on phytochemical profiling and anti-cancer activity of dragon fruit Hylocereus undatus (Haworth) extracts against human hepatocellular carcinoma cancer (HepG-2) cell line. International Journal of Pharmaceutical Sciences and Research, 12(5), 2770-2778.
Petrylak D. P. (2005). The current role of chemotherapy in metastatic hormone-refractory prostate cancer. Urology, 65(5Suppl), 3–8. https://doi.org/10.1016/j.urology.2005.03.053
Rahman, S., & Parvin, R. (2014). Therapeutic potential of Aegle marmelos (L.)-An overview Asian Pac. J. Trop. Dis., 4, 71. https://doi.org/10.1016/S2222-1808(14)60318-2
Rajesh, S., & Sivakumari, K. (2020b). Anticancer Activity of Isolated Fractions from Cardiospermum halicacabum Methanol Leaf Extract on Human Hepatocellular Carcinoma (HepG-2) Cells. Indian J. Nat. Sci., 10(62), 28286-28293.
Rajesh, S., Sivakumari, K., & Ashok, K. (2016). In silico docking of selected compound from Cardiospermum halicacabum Linn. leaf against human hepatocellular carcinoma (HepG2) cell line. International journal of computational bioinformatics and in silico modeling, 5(2), 780–786.
Rajini, S., Sivakumari, K., Rajesh, S., & Ashok, K. (2019). Molecular docking interaction of propolis with Caspase-3, BAX, Bcl-2 and Bcl-xL. International Journal of Research and Analytical Reviews, 6(2), 33–38.
Reddy, V.P., & Urooj, A. (2013). Antioxidant properties and stability of Aegle marmelos leaves extracts. J. Food Sci. Technol., 50, 135-140. https://doi.org/10.1007/S13197-010-0221-Z
Richon, A.B. (1994). An introduction to molecular modeling. Mathematech, 1, 83.
Saha, A., & Yadav, R. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. International Journal of Experimental Research and Review, 30, 1-14. https://doi.org/10.52756/ijerr.2023.v30.001
Sarkar, T., Salauddin, M., & Chakraborty, R. (2020). In-depth pharmacological and nutritional properties of bael (Aegle marmelos): A critical review. J. Agric. Food Res., 2(2020), 100081. https://doi.org/10.1016/J.JAFR.2020.100081
Schwartzman, R. A., & Cidlowski, J. A. (1993). Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocrine Rreviews, 14(2), 133–151. https://doi.org/10.1210/edrv-14-2-133
Tacar, O., Sriamornsak, P., & Dass, C.R. (2013). Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 65(2), 157-170.
Tan, M. L., Ooi, J. P., Ismail, N., Moad, A. I., & Muhammad, T. S. (2009). Programmed cell death pathways and current antitumor targets. Pharmaceutical Research, 26(7), 1547–1560. https://doi.org/10.1007/s11095-009-9895-1
Tang, A., Hallouch, O., Chernyak, V., Kamaya, A., & Sirlin, C.B. (2018). Epidemiology of hepatocellular carcinoma: Target population for surveillance and diagnosis. Abdom Radiol (NY), 43(1), 13–25. https://doi.org/10.1007/s00261-017-1209-1
Tiwari, R., Kumar,A., Shanker, K., Khare, P., Dhobi, M., Kalaiselvan, V., Raghuvanshi, R.S. (2022). Quality control assessment of Aegle marmelos (L.) Correa: A combined approach using high-performance thin-layer chromatography, heavy metal, pesticide and aflatoxin analysis. J. Appl. Res. Med. Aromat. Plants, 31(2022), 100432. https://doi.org/10.1016/J.JARMAP.2022.100432
Wang, Y., Li, J., & Xia, L. (2023). Plant-derived natural products and combination therapy in liver cancer. Front. Oncol., 13, 1116532. https://doi.org/10.3389/fonc.2023.1116532
Xia, F., Wu, L.L., Lau, W.Y., Huan, H.B., Wen, X.D., & Ma, K.S. (2016). Adjuvant sorafenib after heptectomy for Barcelona clinic liver cancer-stage c hepatocellular carcinoma patients. World J. Gastroenterol., 22(23), 5384–5392.
https://doi.org/10.3748/wjg.v22.i23.5384
Yang, H. L., Chen, C. S., Chang, W. H., Lu, F. J., Lai, Y. C., Chen, C. C., Hseu, T. H., Kuo, C. T., & Hseu, Y. C. (2006). Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Letters, 231(2), 215–227. https://doi.org/10.1016/j.canlet.2005.02.004
Zaheer, J., Kim, H., Lee, Y.J., Kim, J.S., & Lim, S.M. (2019). Combination radioimmunotherapy strategies for solid tumors. Int. J. Mo.l Sci., 20(22), 5579. https://doi.org/10.3390/ijms20225579
Yasodha, K., Lizha Mary, L., Surajit, P., & Satish, R. (2023). Exosomes from metastatic colon cancer cells drive the proliferation and migration of primary colon cancer through increased expression of cancer stem cell markers CD133 and DCLK1. Tissue and Cell, 84, 102163. https://doi.org/10.1016/J.TICE.2023.102163
Zhong, Y., Li, H., Li, P., Chen, Y., Zhang, M., Yuan, Z., Zhang, Y., Xu, Z., Luo, G., Fang, Y., & Li, X. (2021). Exosomes: A New Pathway for Cancer Drug Resistance. In Frontiers in Oncology, 11, 2021. https://doi.org/10.3389/fonc.2021.743556.