Annular Beam Driven Metamaterial Backward Wave Oscillator

Authors

  • Jyoti Vengurlekar Department of Electronics and Telecommunication Engineering, Ramrao Adik Institute of Technology (RAIT), D.Y. Patil Deemed to be University, Nerul, Navi Mumbai-400706, India https://orcid.org/0000-0002-8179-2382
  • Ayush Saxena Department of Electronics and Telecommunication Engineering, Ramrao Adik Institute of Technology (RAIT), D.Y. Patil Deemed to be University, Nerul, Navi Mumbai-400706, India https://orcid.org/0000-0001-5550-7667

DOI:

https://doi.org/10.52756/ijerr.2024.v37spl.011

Keywords:

Backward Wave Oscillator, Electron Beam, High power Microwave generation, Metamaterial, PIC Simulations

Abstract

Metamaterials (MTMs) are synthetic materials designed to have characteristics that "may not be readily available in nature," such as negative permittivity, reversed Doppler Effect, reversed Cherenkov Effect, and negative Refractive Index. These characteristics have motivated researchers to analyze and investigate the use of MTMs for modelling high-power microwave (HPM) radiation sources. One of the most potential HPM sources is an annular beam-driven Backward-Wave Oscillator (BWO) based on the Cerenkov mechanism. The devices that use the Cerenkov mechanism are preferred due to their larger bandwidth. Its high output power and repetition operations make it a promising source. In this paper, an annular beam-loaded metamaterial BWO is simulated in order to investigate and comment on the possibility of metamaterial or metamaterial-inspired structures replacing the slow-wave structures (SWSs) in vacuum tube devices. Performance parameters of several BWO configurations loaded with different metamaterial-inspired conductor rings are compared to rippled SWS-based BWOs. The results suggest that fewer metamaterial rings with solid cross-section (CS) inside the BWO lead to a closer match in generated output power and frequency with the output power generated using a rippled SWS.

References

Baig, A., Diana, G., Robert, B., Calvin, D., Larry, R. B., Neville, C. L. (2012). 0.22 THz wideband sheet electron beam Traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis. Physics of Plasmas, 19(9), 093110-1–093110-8. https://doi.org/10.1063/1.4750048.

Banerjee, A. (2020). Wavelength dependent photosensitivity modulation of Aluminium/Lead sulphide/Indium tin oxide back-to-back diode. International Int. J. Exp. Res. Rev., 22, 1-7. https://doi.org/10.52756/ijerr.2020.v22.001

Banerjee, T. S., Ayush, S., Arti, H., Reddy, K.T.V., & Roy, A. (2020). Particle-in-cell simulation of a RBWO with experimental voltage input pulse and external magnetic field. Physics Open, 3, 100015. https://doi.org/10.1016/j.physo.2020.100015.

Banerjee, T. S., Reddy, K. T. V., & Hadap, A. (2014). Review on microwave generation using backward wave oscillator. Scholars Research Library, Archives of Applied Science Research, 6(4), 129-135.

Chandra, R., Sharma, V., Kalyanasundaram, S., Singh, S., Roy, A., Mondal, J., Mitra, S., Patel, A., Biswas, D., & Sharma, A. (2018). A Uniform, Pulsed Magnetic Field Coil for Gigawatt Operation of Relativistic Backward-Wave Oscillator. IEEE Transactions on Plasma Science, 46(8), 2834–2839. https://doi.org/10.1109/TPS.2018.2850353.

Chen Hou-Tong, Antoinette, J. T., & Nanfang, Yu. (2016). A review of metamaterials Physics and Applictions. Reports on Progress in Physics, 79(7), 076401. https://doi.org/10.1088/0034-4885/79/7/076401.

Duan, Z., Chen, G., Jun, Z., Jucheng, L., & Min, C. (2012). Novel electromagnetic radiation in a semi-infinite space filled with a double-negative metamaterial. Physics of Plasmas, 19(1), 013112-1–013112-5. https://doi.org/10.1063/1.3677888.

Duan, Z., Chen, G., Xin, G., & Min, C. (2013). Double negative-metamaterial based terahertz radiation excited by a sheet beam bunch. Physics of Plasmas, 20(9), 093301-1–093301-6. https://doi.org/10.1063/1.4820956.

French, D. M., Don, S., & Keith, C. (2013). Electron beam coupling to a metamaterial structure. Physics of Plasmas, 20(8), 083116-1– 083116-8. https://doi.org/10.1063/1.4817021.

Goplen, B., Larry, L., David, S., Gary, W. (1995). User-configurable MAGIC for electromagnetic PIC calculations. Computer Physics Communications, Elsevier, 87(1-2), 54-86. https://doi.org/10.1016/0010-4655(95)00010-D.

Grow, R.W., & Watkins, D. A. (1955). Backward-Wave Oscillator Efficiency. Proceedings of the IRE, 43(7), 848-856. https://doi.org/10.1109/JRPROC.1955.278151.

Hadap, A., Banerjee, T.S., & Saxena, A. (2020). Sheet Beam Driven Metamaterial Backward Wave Oscillator. IEEE International Conference on Plasma Science (ICOPS), 978-1-7281-5307-0/20. https://doi.org/10.1109/ICOPS37625.2020.9717696.

Hummelt, J.S., Samantha, M. L., Michael, A. S., & Richard, J. T. (2014). Design of Metamaterial Based Backward Wave Oscillator. IEEE Transactions on Plasma Science, 42(4), 930-936. https://doi.org/10.1109/TPS.2014.2309597.

Jorwal, S., Dubey, A., Gupta, R., & Agarwal, S. (2023). A review: Advancement in metamaterial based RF and microwave absorbers. Sensors and Actuators A: Physical, 354, 114283. https://doi.org/10.1016/j.sna.2023.114283.

Kumar, R., Garg, A., Shah, H., & Kaur, B. (2023). Survey on performance parameters of planar microwave antennas. Int. J. Exp. Res. Rev., 31(Spl Volume), 186-194. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.017

Ludeking, L., Woods, A., & Cavey, L. (2011). Magic 3.2.0 Help Manual. Alliant Techsystems (ATK), Newington, VA, USA, Technical Report.

Marqués, R., Ferran, M., & Mario, S. (2007). Metamaterials with Negative Parameters: Theory Design and Microwave applications. John Wiley and Sons, ISBN: 978-0-470-19173-6.

Mineo, M., & Claudio, P. (2010). Corrugated Rectangular Waveguide Tunable Backward Wave Oscillator for Terahertz Applications, 57(6), 1481–1484. https://doi.org/10.1109/TED.2010.2045678.

Nguyen, L. B., Thomas, M. A., Gregory, S. N., Nguyen, L. B., Antonsen, T. M., & Nusinovich, G. S. (2014). Planar slow-wave structure with parasitic mode control. IEEE Transactions on Electron Devices, 61(6), 1600–1655. https://doi.org/10.1109/TED.2014.2304839.

Pan, W., & Xiangqin, Z. (2021). Hybrid CPU- and GPU-based Implementation for Particle-in-Cell Simulation on Multicore and Multi-GPU Systems. 2021 Photonics & Electromagnetics Research Symposium (PIERS), 978-1-7281-7247-7/21, IEEE, pp.155-161. https://doi.org/10.1109/PIERS53385.2021.9694911.

Pendry, J., B., Holden, A. J., Robbins, D. J., & Steward, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084. https://doi.org/10.1109/22.798002.

Pendry J., B., Schuring, D., & Smith, D. R. (2006). Controlling Electromagnetic Fields. Sciences, 312(5781), 1780-1782. https://doi.org/10.1126/science.1125907.

Seidfaraji, H., Ahmed, E., Christos, C., & Edl, S. (2019). A multibeam metamaterial backward wave oscillator. Physics of Plasmas, 26(7), 073105-1-073105-7, https://doi.org/10.1063/1.5100159.

Shapiro M. A., S. Trendafilov, Y. Urzhumov, A. Alù, R. J. Temkin, and G. Shvets (2012). Active negative-index metamaterial powered by an electron beam. Physical Review B, 86(8), 085132-1– 085132-5. https://doi.org/10.1103/physrevb.86.085132.

Shiffler, D., John, L., David, M.F., & Jack, W. (2010). A Cerenkov-like Maser Based on a Metamaterial Structure. IEEE Transactions on Plasma Science, 38(6), 1462-1465. https://doi.org/10.1109/TPS.2010.2046914.

Shiffler, D., Rebecca, S., Elena, L., Erin, S., Wilkin, T., & David, F. (2013). Study of Split-Ring Resonators as a Metamaterial for High-Power Microwave Power Transmission and the Role of Defects. IEEE Transactions on Plasma Science, 41(6), 1679–1685. https://doi.org/10.1109/TPS.2013.2251669.

Simovski, C.R., & Sergei, A. T. (2009) Historical Notes on Metamaterials. In: Filippo Capolino. Theory and Phenomena of Metamaterials. 1st edition, Taylor and Francis group, CRC Press. 10.1201/9781420054262.

Smith, D. R., Willie, J. P., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184-4187. https://doi.org/10.1103/PhysRevLett.84.4184.

Tan, Y.S., & Seviour, R. (2009). Wave energy amplification in a metamaterial-based traveling-wave structure. Europhysics Letters, 87(3), 34005. https://doi.org/10.1209/0295-5075/87/34005.

Tatiana, Y.A., & Andrey, V.T. (2021). Reversed Cherenkov-transition radiation in a waveguide partly filled with an anisotropic dispersive medium. Radiation Physics and Chemistry, 180, 109254, ISSN 0969-806X.

https://doi.org/10.1016/j.radphyschem.2020.109254.

Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. American Institute of Physics Soviet Physics Uspekhi, 10(4), 509-514. https://doi.org/10.1070/PU1968v010n04ABEH003699.

Wang, Z., Yubin, G., Yanyu, W., Zhaoyun, D., Yabin, Z., Linna, Y., Huarong, G., Hairong, Y., Zhigang, L., Jin, X., & Jinjun, F. (2013). High-Power Millimeter-Wave BWO Driven by Sheet Electron Beam. IEEE Transactions on Electron Devices, 60(1), 471–477. https://doi.org/10.1109/TED.2012.2226587.

Xiangyan, A., Min, C., Zheng-Ming, S., & Jie, Z. (2022). Modeling of Bound Electron Effects in Particle-in-Cell Simulation. Communication Computional Physics, 32(2), 583-594. https://doi.org/10.4208/cicp.OA-2021-0258.

Published

2024-03-30

How to Cite

Vengurlekar, J., & Saxena, A. (2024). Annular Beam Driven Metamaterial Backward Wave Oscillator. International Journal of Experimental Research and Review, 37(Special Vo), 131–138. https://doi.org/10.52756/ijerr.2024.v37spl.011