Experimental Study on Mechanical Behaviour of Arhar-Reinforced Composites using GRA with PCA

  • Venugopal Naidu Manubolu Department of Mechanical Engineering, S.V.U. College of Engineering, Tirupati-517502, India https://orcid.org/0000-0001-6752-3955
  • Diwakar Reddy Vanimireddy Department of Mechanical Engineering, S.V.U. College of Engineering, Tirupati-517502, India https://orcid.org/0000-0003-1908-1368
Keywords: Arhar Powder, FEA Analysis, GRA and PCA, Mechanical Tests, SEM and XRD

Abstract

The fiber composite plays a vital role in various applications in the current scenario. Natural fibers provide the desired advantages over synthetic fibers. Fiber composites deliver the exploration of durable, degradable, and lightweight materials. In several industrial sectors, transportation of materials from one place to another place is required. Materials like thermocoal boxes and iron boxes are inefficient in strength, weight, and cost. In order to overcome these, natural fiber-based composites, which give both strength and durability with low weight and cost, are chosen. This work explains the sample preparation using Arhar powder with an addition of reinforcements using the hand lay-up method by obeying the ASTM standards. To analyze the performance of the sample specimen, properties evaluated like Compression, Flexural, and other tests were conducted. GRA (Grey-Relational Analysis) with PCA (Principal-Component Analysis) was employed to carry out the most significant parameters, the most significant factor, and the weights of optimal parameters. Based on the output responses, it is experiential that the most effective parameter and best combination factor at Acrylonitrile butadiene styrene (ABS-4%), Guar Gum (8%), and Carboxy methyl cellulose (CMC-8%) with the values of 83.12 MPa compression strength, 61.70 MPa tensile strength and 0.249 joules of Impact strength.

Author Biography

Diwakar Reddy Vanimireddy, Department of Mechanical Engineering, S.V.U. College of Engineering, Tirupati-517502, India

DEPARTMENT OF MECHANICAL ENGINEERING

References

Balakrishnan, M.E.N., Muralkar, P.K., Ponraj, M.R., Nadiger, S., Dhandayutham, S., Justus, S., & Bhagavathsingh, J. (2022). Recycling of sawdust as a filler reinforced cotton seed oil resin amalgamated polystyrene composite material for sustainable waste management applications. Materials Today: Proceedings, 58(2),783-78. https://doi.org/10.1016/j.matpr.2022.03.331

de Kergariou, C., Chul Kim, B.C., Perriman, A., Duigou, A.L., Guessasma, S., & Scarpa, F. (2022). Design of 3D and 4D printed continuous fiber composites via an evolutionary algorithm and voxel-based Finite Elements: Application to natural fiber hygromorphs. Additive Manufacturing, 59(A), 1-12. https://doi.org/10.1016/j.addma.2022.103144

Jhamb, S. K., Goyal, A., Pandey, A., & Verma, M. N. (2023). Mechanical, Wear, and Degradation Behavior of Biodegradable Mg-x% Sn Alloy Fabricated through Powder Mixing Techniques. Journal of Materials Engineering and Performance, 32, 7123–7133. https://doi.org/10.1007/s11665-022-07620-8

Joshi, S.V., Drzal, L.T., Mohanty, A.K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016

Kamath, S.S., & Chandrappa, R.K. (2022). Additives used in natural fiber reinforced polymer composites-a review, Materials Today: Proceedings, 50(5), 1417-1424. https://doi.org/10.1016/j.matpr.2021.08.331

Kerni, L., Singh, S., Patnaik, P., & Kumar, N. (2020). A review on natural fiber reinforced composites. Materials Today: Proceedings, 28(3), 1616-1621. https://doi.org/10.1016/j.matpr.2020.04.851

Kumar, R., Kumar, K., & Bhowmik, S. (2014). Optimization of mechanical properties of epoxy-based wood dust reinforced green composite using Taguchi method. Procedia Materials Science, 5, 688-696. https://doi.org/10.1016/j.mspro.2014.07.316

Nair, K.C.M., Kumar, R.P., Thomas, S., Schit, S.C., & Ramamurthy, K. (2000). Rheological behavior of short sisal fiber- reinforced polystyrene composites. Composites Part A: Applied Science and Manufacturing, 31(11), 1231-1240. https://doi.org/10.1016/S1359-835X(00)00083-X

Nascimento, D.C.O., Ferreira, A.S., Monteiro, S.N., Aquino, R.C.M.P., & Kestur, S.G. (2012). Studies on the characterization of piassava fiber and their epoxy composites. Composites Part A: Applied Science and Manufacturing, 43(3), 353-362. https://doi.org/10.1016/j.compositesa.2011.12.004

Nayak, S., Jesthi, D.K., Saroj, S., & Sadarang, J. (2022). Assessment of impact and hardness property of natural fiber and glass fiber hybrid polymer composite. Materials Today: Proceedings, 49(2), 497-501. https://doi.org/10.1016/j.matpr.2021.03.079

Om Prakash, M., Raghavendra, G., Panchal, M., S. Ojha, S., & Bose, P.S.C. (2018). Influence of distinct environment on the mechanical characteristics of Arhar fiber polymer composites. Silicon, 10, 825-830. https://doi.org/10.1007/s12633-016-9536-3

Pingulkar, H., Mache, A., Munde, Y., & Siva, I. (2021). A comprehensive review on drop weight impact characteristics of bast natural fiber reinforced polymer composites. Materials Today: Proceedings, 44(5), 3872-3880. https://doi.org/10.1016/j.matpr.2020.12.925

Pramanik, A., Sarkar, S., Maiti, J., & Mitra, P. (2021). RT-GSOM: Rough tolerance growing self-organizing map. Information Sciences, 566, 19-37. https://doi.org/10.1016/j.ins.2021.01.039

Rajini, B., Narasimha, R.A.V., & Sashidhar, C. (2021). Micro-level studies of fly ash and GGBS –based geopolymer concrete using Fourier transform Infra-Red. Materials Today: Proceedings, 46(1), 586-589. https://doi.org/10.1016/j.matpr.2020.11.291

Riccardi, M.R., Mauriello, F., Sarkar, S., Galante, F., Scarano, A., & Montella, A. (2022). Parametric and Non-Parametric Analyses for Pedestrian Crash Severity Prediction in Great Britain. Sustainability, 14(6), 3188. https://doi.org/10.3390/su14063188

Saini, M.K., Bagha, A.K., Kumar, S., & Bahl, S. (2021). Finite element analysis for predicting the vibration characteristics of natural fiber reinforced epoxy composites. Materials Today: Proceedings, 41(2), 223-227. https://doi.org/10.1016/j.matpr.2020.08.717

Sapuan, S. M., Leenie, A., Harimi, M., & Beng, Y.K. (2006), Mechanical Properties of Woven banana fiber Reinforced Epoxy Composites. Materials and Design, 27(8), 689-693. https://doi.org/10.1016/j.matdes.2004.12.016

Sarkar, S., & Maiti, J. (2020). Machine learning in occupational accident analysis: A review using science mapping approach with citation network analysis. Safety Science, 131, 104900, https://doi.org/10.1016/j.ssci.2020.104900

Sarkar, S., Baidya, S., & Maiti, J. (2017). Application of rough set theory in accident analysis at work: A case study, Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 245-250. http://dx.doi.org/10.1109/ICRCICN.2017.8234514

Sarkar, S., Chain, M., Nayak, S., & Maiti, J. (2019). Decision Support System for Prediction of Occupational Accident: A Case Study from a Steel Plant. Emerging Technologies in Data Mining and Information Security, Part of Advances in Intelligent Systems and Computing, 813,7 87-796, Springer, Singapore. https://doi.org/10.1007/978-981-13-1498-8_69

Sarkar, S., Pramanik, A.P., Maiti, J., & Genserik, R. (2020). Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data. Safety Science, 125, 104616. https://doi.org/10.1016/j.ssci.2020.104616

Sarkar, S., Vinay, S., Raj, R., Maiti, J., & Mitra, P. (2019). Application of optimized machine learning techniques for prediction of occupational accidents. Computers & Operations Research, 106, 210-224. https://doi.org/10.1016/j.cor.2018.02.021

Sinha, R.K., Sridhar, K., Purohit, R., & Malviya, R.K. (2020). Effect of nano SiO2 on properties of natural fiber reinforced epoxy hybrid composite: A review. Materials Today: Proceedings, 26(2), 3183-3186. https://doi.org/10.1016/j.matpr.2020.02.657

Sk.Yusuf, S., Md. Islam, N., Md. Akram, W., Md. Ali, H., & Md. Siddique, A. (2020). Prediction of the best tensile and flexural strength of natural fiber reinforced epoxy resin-based composite using Taguchi method. Proceedings of the International Conference on Industrial & Mechanical Engineering and Operations Management. http://www.ieomsociety.org/imeom/168.pdf

Tang, L., Liu, T., Sun, P., Wang, Y., & Liu, G. (2022). Sisal fiber modified construction waste recycled brick as building material: Properties, performance and applications. Structures, 46, 927-935. https://doi.org/10.1016/j.istruc.2022.10.126

Venkata, A.K.G., & Damodar, R. M. (2023). TLBO-trained ANN-based Shunt Active Power Filter for Mitigation of Current Harmonics. International Journal of Experimental Research and Review, 34(Special Vol), 11-21. https://doi.org/10.52756/ijerr.2023.v34spl.002

Vijayan, R., Bharani, C.J., Rathinasuriyan, C., Palanisamy, R., & Thanka, G. T. (2022). Viscoelastic behavior of natural fiber reinforced composite material. Materials Today: Proceedings, 52(3), 1942-1945. https://doi.org/10.1016/j.matpr.2021.11.592

Yadav, R., Gupta, R. K., & Goyal, A. (2020). Study of tribological behavior of hybrid metal matrix composites prepared by stir casting method. Materials Today: Proceedings, 28(4), 2218-2222. https://doi.org/10.1016/j.matpr.2020.04.527.

Published
2023-12-30
How to Cite
Manubolu, V., & Vanimireddy, D. (2023). Experimental Study on Mechanical Behaviour of Arhar-Reinforced Composites using GRA with PCA. International Journal of Experimental Research and Review, 36, 232-243. https://doi.org/10.52756/ijerr.2023.v36.023
Section
Articles