A Green Raman Spectroscopic Assay Method for The Quantification of Tranexamic Acid in Pharmaceutical Formulations

Keywords: Green analytical Assay, Pharmaceutical formulations, Quantification, Raman spectroscopy, Tranexamic acid

Abstract

Tranexamic acid (TXA) is a widely used antifibrinolytic agent that is used to prevent and treat excessive bleeding. Current analytical methods for TXA are often time-consuming and require the use of toxic solvents. Raman spectroscopy has the ability to measure TXA because it is a fast and non-destructive analytical method. This research established and validated a green Raman spectroscopic test for TXA measurement. There was no need for harmful solvents because the technique relied on a basic aqueous solution of TXA. Results demonstrated that the technique was linear across the 0.7% to 13.0% concentration range. The method was also shown to be accurate, with results comparable to the orthogonal techniques. The green Raman spectroscopic assay method was applied to the quantification of TXA in pharmaceutical formulations. The results obtained were comparable to those obtained using reference methods. To quantify TXA quickly and accurately, one can use the green Raman spectroscopic test. Since no harmful chemicals are needed for the procedure, it is also eco-friendly. Method has the potential to be used in a variety of settings, including pharmaceutical quality control and research laboratories.

References

Anastas, P. T. (1998). Green Chemistry: Theory and Practice. Oxford University Press. Oxford University Press.

Andrews, D. T., Geentjens, K., Igne, B., McGeorge, G., Owen, A. W., Pedge, N. I., Villaumié, J., & Woodward, V. (2018). Analytical Method Development Using Transmission Raman Spectroscopy for Pharmaceutical Assays and Compliance with Regulatory Guidelines—Part I: Transmission Raman Spectroscopy and Method Development. Journal of Pharmaceutical Innovation, 13(2), 121–132. https://doi.org/10.1007/s12247-018-9311-7

Ansari, T. M., Raza, A., & Rehman, A. (2005). Spectrophotometric determination of tranexamic acid in pharmaceutical bulk and dosage forms. Analytical Sciences, 21(9), 1133–1136. https://doi.org/10.2116/analsci.21.1133

Buckley, K., & Matousek, P. (2011). Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 55(4), 645–652. https://doi.org/10.1016/j.jpba.2010.10.029

Ciurba, A., Hancu, G., Cojocea, L., Sipos, E., & Todoran, N. (2013). Development of new formulation and its evaluation by capillary electrophoresis of tablets containing tramadol hydrochloride and paracetamol. Pharmaceutical Development and Technology, 19(7), 833–838. https://doi.org/10.3109/10837450.2013.836219

Eliasson, C., Macleod, N. A., Jayes, L., Clarke, F., Hammond, S. V., Smith, M. R., & Matousek, P. (2008). Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 47(2), 221–229.

https://doi.org/10.1016/j.jpba.2008.01.013

Everall, N., Priestnall, I. M., Dallin, P., Andrews, J. R., Lewis, I. R., Davis, K. L., Owen, H., & George, M. W. (2010). Measurement of spatial resolution and sensitivity in transmission and backscattering Raman Spectroscopy of opaque samples: Impact on pharmaceutical quality control and Raman tomography. Applied Spectroscopy, 64(5), 476–484. https://doi.org/10.1366/000370210791211646

Fransson, M., Johansson, J., Sparén, A., & Svensson, O. (2010). Comparison of multivariate methods for quantitative determination with transmission Raman spectroscopy in pharmaceutical formulations. Journal of Chemometrics, 24(11–12), 674–680. https://doi.org/10.1002/cem.1330

Gadkariem, E. A., Magdi A. M., & Jabbir, A.A. M. (2012). Spectrophotometric Method for the Determination of Tranexamic Acid in Bulk and Dosage Forms. World Applied Sciences Journal, 19 (9), 1263-1267.

Gleeson, N., Buggy, F., Sheppard, B. L., & Bonnar, J. (1994). The effect of tranexamic acid on measured menstrual loss and endometrial fibrinolytic enzymes in dysfunctional uterine bleeding. Acta Obstetricia Et Gynecologica Scandinavica, 73(3), 274–277. https://doi.org/10.3109/00016349409023453

Griffen, J. A., Owen, A. W., & Matousek, P. (2015). Comprehensive quantification of tablets with multiple active pharmaceutical ingredients using transmission Raman spectroscopy—A proof of concept study. Journal of Pharmaceutical and Biomedical Analysis, 115, 277–282. https://doi.org/10.1016/j.jpba.2015.07.019

Inoue, M., Hisada, H., Koide, T., Fukami, T., Roy, A., Carriere, J., & Heyler, R. (2019). Transmission Low-Frequency RAMAN spectroscopy for quantification of crystalline polymorphs in pharmaceutical tablets. Analytical Chemistry, 91(3), 1997–2003. https://doi.org/10.1021/acs.analchem.8b04365

Johansson, J., Sparén, A., Svensson, O., Folestad, S., & Claybourn, M. (2007). Quantitative transmission RAMAN spectroscopy of pharmaceutical tablets and capsules. Applied Spectroscopy, 61(11), 1211–1218. https://doi.org/10.1366/000370207782597085

Li, Y., Igne, B., Drennen, J. K., & Anderson, C. A. (2016). Method development and validation for pharmaceutical tablets analysis using transmission Raman spectroscopy. International Journal of Pharmaceutics, 498(1–2), 318–325. https://doi.org/10.1016/j.ijpharm.2015.11.049

Lim, Y., Han, J., Woo, Y., Kim, J., & Kang, M. J. (2018). Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 200, 26–32.

https://doi.org/10.1016/j.saa.2018.04.017

Liu, Y., Doddi, J., Zheng, Y., Ho, V. W., Pheil, M., & Shi, Y. (2019). Transmission Raman spectroscopic quantification of active pharmaceutical ingredient in coated tablets of Hot-Melt extruded amorphous solid dispersion. Applied Spectroscopy, 74(1), 108–115. https://doi.org/10.1177/0003702819884994

Matousek, P., Everall, N., Littlejohn, D., Nordon, A., & Bloomfield, M. J. (2011). Dependence of signal on depth in transmission Raman spectroscopy. Applied Spectroscopy, 65(7), 724–733. https://doi.org/10.1366/11-06259

Nerdy, N., Margata, L., Sembiring, B. M., Ginting, S., De Lux Putra, E., & Bakri, T. K. (2021). Validation of the developed Zero-Order Infrared Spectrophotometry method for qualitative and quantitative analyses of tranexamic acid in marketed tablets. Molecules, 26(22), 6985. https://doi.org/10.3390/molecules26226985

Niedziałkowski, P., Cebula, Z., Malinowska, N., Białobrzeska, W., Sobaszek, M., Ficek, M., Bogdanowicz, R., Anand, J. S., & Ossowski, T. (2019). Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls. Biosensors and Bioelectronics, 126, 308–314. https://doi.org/10.1016/j.bios.2018.10.063

Omar, J., Boix, A., & Ulberth, F. (2020). Raman spectroscopy for quality control and detection of substandard painkillers. Vibrational Spectroscopy, 111, 103147. https://doi.org/10.1016/j.vibspec.2020.103147

Orlando, A., Franceschini, F., Muscas, C., Pidkova, S., Bartoli, M., Rovere, M., & Tagliaferro, A. (2021). A comprehensive review on Raman Spectroscopy applications. Chemosensors, 9(9), 262. https://doi.org/10.3390/chemosensors9090262

Patil, R. R., Ahmed, A. K. L., Firke, S. D., & Pawar, D. (2017). RP-HPLC PDA Analysis of Tranexamic Acid in bulk and tablet Dosage form. Analytical Chemistry Letters, 7(6), 813–821. https://doi.org/10.1080/22297928.2017.1422438

Pelletier, M. J., Larkin, P. J., & Santangelo, M. M. M. (2012). Transmission Fourier transform Raman spectroscopy of pharmaceutical tablet cores. Applied Spectroscopy, 66(4), 451–457. https://doi.org/10.1366/11-06538

Pena‐Pereira, F., Wojnowski, W., & Tobiszewski, M. (2020). AGREE—Analytical GREENNess Metric Approach and Software. Analytical Chemistry, 92(14), 10076–10082. https://doi.org/10.1021/acs.analchem.0c01887

Sha, K. C., Shah, M. B., Solanki, S. J., Makwana, V. D., Sureja, D. K., Anuradha, G., Bodiwala, K. B., & Dhameliya, T. M. (2023). Recent advancements and applications of Raman spectroscopy in pharmaceutical analysis. Journal of Molecular Structure, 1278, 134914. https://doi.org/10.1016/j.molstruc.2023.134914

Shih, W. (2015). Constrained regularization for noninvasive glucose sensing using Raman spectroscopy. Journal of Innovative Optical Health Sciences, 08(04), 1550022. https://doi.org/10.1142/s1793545815500224

Shimamura, R., Koide, T., Hisada, H., Inoue, M., Fukami, T., Katori, N., & Goda, Y. (2019). Pharmaceutical quantification with univariate analysis using transmission Raman spectroscopy. Drug Development and Industrial Pharmacy, 45(9), 1430–1436. https://doi.org/10.1080/03639045.2019.1621336

Silge, A., Weber, K., Cialla‐May, D., Müller-Bötticher, L., Fischer, D., & Popp, J. (2022). Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. TrAC Trends in Analytical Chemistry, 153, 116623. https://doi.org/10.1016/j.trac.2022.116623

Sparén, A., Hartman, M., Fransson, M., Johansson, J., & Svensson, O. (2015). Matrix effects in quantitative assessment of pharmaceutical tablets using transmission RAMAN and Near-Infrared (NIR) spectroscopy. Applied Spectroscopy, 69(5), 580–589. https://doi.org/10.1366/14-07645

Steinbach, D., Anderson, C. A., McGeorge, G., Igne, B., Bondi, R. W., & Drennen, J. K. (2017). Calibration Transfer of a Quantitative Transmission Raman PLS Model: Direct Transfer vs. Global Modeling. Journal of Pharmaceutical Innovation, 12(4), 347–356. https://doi.org/10.1007/s12247-017-9299-4

Villaumié, J., Andrews, D. T., Geentjens, K., Igne, B., McGeorge, G., Owen, A. W., Pedge, N. I., & Woodward, V. (2018). Analytical Method Development Using Transmission Raman Spectroscopy for Pharmaceutical Assays and Compliance with Regulatory Guidelines—Part II: Practical Implementation Considerations. Journal of Pharmaceutical Innovation, 14(3), 245–258. https://doi.org/10.1007/s12247-018-9350-0

Wang, R., Zhou, M., Wang, S., Liao, Y., Xue, F., & Ma, Y. (2020). [Determination of tranexamic acid in essential cosmetics by pre-column derivatization capillary electrophoresis coupled with electrogenerated chemiluminescence detection]. Chinese Journal of Chromatography, 38(8), 968–974. https://doi.org/10.3724/sp.j.1123.2019.12002

Zhao, X., Wang, N., Zhu, M., Qiu, X., Sun, S., Liu, Y., Zhao, T., Yao, J., & Shan, G. (2022). Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol. Molecules, 27(5), 1707. https://doi.org/10.3390/molecules27051707.

Published
2023-12-30
How to Cite
Singh, P. S., Lokhande, R., & Kochrekar, D. A. (2023). A Green Raman Spectroscopic Assay Method for The Quantification of Tranexamic Acid in Pharmaceutical Formulations. International Journal of Experimental Research and Review, 36, 415-424. https://doi.org/10.52756/ijerr.2023.v36.036
Section
Articles