Performance and Accuracy Enhancement During Skin Disease Detection in Deep Learning

Authors

DOI:

https://doi.org/10.52756/ijerr.2023.v35spl.009

Keywords:

Accuracy, CNN, F1 score, Performance, Recall, Skin cancer

Abstract

Epidermolysis bullosa is a type of skin cancer that is consistently ranked as among the worst diseases in the world. Accurate categorization of skin lesions in their early stages may assist during clinical deliberation, hence increasing the possibility of a cure before cancer starts. The components that are often affected by direct sunlight are the ones most likely to acquire a form of skin cancer. These include the head, and body parts that are more obvious in men than women are the legs and feet. However, it can also develop on parts of your body that are rarely subjected to air and light, such as your hands and feet. Researchers today are thinking about using deep learning to identify skin cancer more quickly and accurately. Compression operations have been performed to boost performance, while a hybrid deep learning model has enhanced accuracy metrics like recall, precision, and f1-score.

References

Alfi, I. A., Rahman, Md. M., Shorfuzzaman, M., & Nazir, A. (2022). A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models. Diagnostics, 12(3), 726.

Alsaade, F. W., Aldhyani, T. H. H., & Al-Adhaileh, M. H. (2021). Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Computational and Mathematical Methods in Medicine, 2021, 1–20. https://doi.org/10.1155/2021/9998379

Arif, M., Philip, F. M., Ajesh, F., Izdrui, D., Craciun, M. D., & Geman, O. (2022). Automated Detection of Nonmelanoma Skin Cancer Based on Deep Convolutional Neural Network. Journal of Healthcare Engineering, 2022, 1–15. https://doi.org/10.1155/2022/6952304

Banerjee, S., Singh, S. K., Chakraborty, A., Basu, S., Das, A., & Bag, R. (2021). Diagnosis of Melanoma Lesion Using Neutrosophic and Deep Learning. Traitement Du Signal, 38(5), 1327–1338. https://doi.org/10.18280/ts.380507

Berseth, M. (2017). ISIC 2017—Skin Lesion Analysis Towards Melanoma Detection. https://doi.org/10.48550/ARXIV.1703.00523

Cabanac, G., Labbé, C., & Magazinov, A. (2021). Tortured phrases: A dubious writing style emerging in science. Evidence of Critical Issues Affecting Established Journals. https://doi.org/10.48550/ARXIV.2107.06751

Fu’adah, Y. N., Pratiwi, N. C., Pramudito, M. A., & Ibrahim, N. (2020). Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System. IOP Conference Series: Materials Science and Engineering, 982(1), 012005. https://doi.org/10.1088/1757-899X/982/1/012005

Gautam, S., Ahlawat, S., & Mittal, P. (2022). Binary and Multiclass Classification of Brain Tumors using MRI Images. International Journal of Experimental Research and Review, 29, 1–9. https://doi.org/10.52756/ijerr.2022.v29.001

Gulzar, Y., & Khan, S. A. (2022). Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks—A Comparative Study. Applied Sciences, 12(12), 5990. https://doi.org/10.3390/app12125990

Hoshyar, A. N., Al-Jumaily, A., & Hoshyar, A. N. (2014). The Beneficial Techniques in Preprocessing Step of Skin Cancer Detection System Comparing. Procedia Computer Science, 42, 25–31. https://doi.org/10.1016/j.procs.2014.11.029

Jain, J., Sahu, S., & Dixit, A. (2023). Brain tumor detection model based on CNN and threshold segmentation. International Journal of Experimental Research and Review, 32, 358–364. https://doi.org/10.52756/ijerr.2023.v32.031

Jojoa Acosta, M. F., Caballero Tovar, L. Y., Garcia-Zapirain, M. B., & Percybrooks, W. S. (2021). Melanoma diagnosis using deep learning techniques on dermatoscopic images. BMC Medical Imaging, 21(1), 6. https://doi.org/10.1186/s12880-020-00534-8

Kaur, R., GholamHosseini, H., Sinha, R., & Lindén, M. (2022). Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images. BMC Medical Imaging, 22(1), 103. https://doi.org/10.1186/s12880-022-00829-y

Khan, M. A., Sharif, M., Akram, T., Damaševičius, R., & Maskeliūnas, R. (2021). Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics, 11(5), 811. https://doi.org/10.3390/diagnostics11050811

Li, Y., & Shen, L. (2018). Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network. Sensors, 18(2), 556. https://doi.org/10.3390/s18020556

Maher Ahmed, H., & Younis Kashmola, M. (2022). A proposed architecture for convolutional neural networks to detect skin cancers. IAES International Journal of Artificial Intelligence (IJ-AI), 11(2), 485. https://doi.org/10.11591/ijai.v11.i2.pp485-493

Manzoor, K., Majeed, F., Siddique, A., Meraj, T., Tayyab Rauf, H., A. El-Meligy, M., Sharaf, M., & Elatty E. Abd Elgawad, A. (2022). A Lightweight Approach for Skin Lesion Detection Through Optimal Features Fusion. Computers, Materials & Continua, 70(1), 1617–1630. https://doi.org/10.32604/cmc.2022.018621

Nofallah, S., Mokhtari, M., Wu, W., Mehta, S., Knezevich, S., May, C. J., Chang, O. H., Lee, A. C., Elmore, J. G., & Shapiro, L. G. (2022). Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net. Journal of Digital Imaging, 35(5), 1238–1249. https://doi.org/10.1007/s10278-022-00641-8

Palpandi, S., & Meeradevi, T. (2022). Development of Efficient Classification Systems for the Diagnosis of Melanoma. Computer Systems Science and Engineering, 42(1), 361–371. https://doi.org/10.32604/csse.2022.021412

Panja, A., Christy, J. J., & Abdul, Q. M. (2021). An Approach to Skin Cancer Detection using Keras and Tensorflow. Journal of Physics: Conference Series, 1911(1), 012032. https://doi.org/10.1088/1742-6596/1911/1/012032

Pennisi, A., Bloisi, D. D., Suriani, V., Nardi, D., Facchiano, A., & Giampetruzzi, A. R. (2022). Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices. Journal of Digital Imaging, 35(5), 1217–1230. https://doi.org/10.1007/s10278-022-00634-7

Popescu, D., El-Khatib, M., El-Khatib, H., & Ichim, L. (2022). New Trends in Melanoma Detection Using Neural Networks: A Systematic Review. Sensors, 22(2), 496. https://doi.org/10.3390/s22020496

Ramachandram, D., & DeVries, T. (2017). LesionSeg: Semantic segmentation of skin lesions using Deep Convolutional Neural Network. https://doi.org/10.48550/ARXIV.1703.03372

Reddy, N. S., & Khanaa, V. (2023). Diagnosing and categorizing of pulmonary diseases using Deep learning conventional Neural network. International Journal of Experimental Research and Review, 31(Spl Volume), 12–22. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.002

Saba, T., Javed, R., Shafry Mohd Rahim, M., Rehman, A., & Ali Bahaj, S. (2022). IoMT Enabled Melanoma Detection Using Improved Region Growing Lesion Boundary Extraction. Computers, Materials & Continua, 71(3), 6219–6237. https://doi.org/10.32604/cmc.2022.020865

Saha, A., & Yadav, R. K. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. International Journal of Experimental Research and Review, 30, 1–14. https://doi.org/10.52756/ijerr.2023.v30.001

Sankar Raja Sekhar, K., Ranga Babu, T., Prathibha, G., Vijay, K., & Chiau Ming, L. (2021). Dermoscopic image classification using CNN with Handcrafted features. Journal of King Saud University - Science, 33(6), 101550. https://doi.org/10.1016/j.jksus.2021.101550

Shawon, M., Abedin, K. F., Majumder, A., Mahmud, A., & Mishu, M. M. C. (2021). Identification of Risk of

Occurring Skin Cancer (Melanoma) Using Convolutional Neural Network (CNN). AIUB Journal of Science and Engineering (AJSE), 20(2), 47–51. https://doi.org/10.53799/ajse.v20i2.140

Silva Araujo, G. (2022). U-Net_based_Network_Applied_to_Skin_Lesion_Segmentation_An_ Ablation_Study. CLEI Electronic Journal, 25(2), 5. https://doi.org/10.19153/cleiej.25.2.5

Tahir, J., Rameez Naqvi, S., Aurangzeb, K., & Alhussein, M. (2022). A Saliency Based Image Fusion Framework for Skin Lesion Segmentation and Classification. Computers, Materials & Continua, 70(2), 3235–3250. https://doi.org/10.32604/cmc.2022.018949

Usmani, U. A., Watada, J., Jaafar, J., Aziz, I. A., & Roy, A. (2021). A Reinforcement Learning Algorithm for Automated Detection of Skin Lesions. Applied Sciences, 11(20), 9367. https://doi.org/10.3390/app11209367

Vaiyapuri, T., Balaji, P., S, Shridevi., Alaskar, H., & Sbai, Z. (2022). Computational Intelligence-Based Melanoma Detection and Classification Using Dermoscopic Images. Computational Intelligence and Neuroscience, 2022, 1–12. https://doi.org/10.1155/2022/2370190

W. Abo El-Soud, M., Gaber, T., Tahoun, M., & Alourani, A. (2022). An Enhanced Deep Learning Method for Skin Cancer Detection and燙lassification. Computers, Materials & Continua, 73(1), 1109–1123. https://doi.org/10.32604/cmc.2022.028561

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9

Yanase, J., & Triantaphyllou, E. (2019). The seven key challenges for the future of computer-aided diagnosis in medicine. International Journal of Medical Informatics, 129, 413–422. https://doi.org/10.1016/j.ijmedinf.2019.06.017

Yuan, Y., & Lo, Y.-C. (2019). Improving Dermoscopic Image Segmentation With Enhanced Convolutional-Deconvolutional Networks. IEEE Journal of Biomedical and Health Informatics, 23(2), 519–526. https://doi.org/10.1109/JBHI.2017.2787487

Published

2023-11-30

How to Cite

Kaur, P. (2023). Performance and Accuracy Enhancement During Skin Disease Detection in Deep Learning. International Journal of Experimental Research and Review, 35, 96–108. https://doi.org/10.52756/ijerr.2023.v35spl.009