High Purity Orbital Angular Momentum Modes Reconfiguration Using Uniform Circular Array Antenna to Enhance Channel Capacity and Spectral Efficiency
DOI:
https://doi.org/10.52756/ijerr.2023.v36.027Keywords:
EFPDP, NRP, OAM, Observational Distance, UCA Antenna factor, UCA elements, UCA radiusAbstract
Technology based on OAM (orbital angular momentum) has great potential for enhancing the bandwidth efficiency of telecommunication systems. Although OAM waves are orthogonal, it is possible to multiplex various modes within a single frequency channel. Significantly, the overall spectrum efficiency, as well as channel capacity, can be improved. Multiple users can share the same frequency channel by using orthogonal modes, which eliminates the requirement for extra resources like time and frequency. This research uses MATLAB code to derive a uniform circular array (UCA) antenna factor under the cylindrical coordinate system. This factor is used to illustrate the array antenna's electric field to generate OAM waves or radio waves that carry the OAM mode. OAM modes can be reconfigured for the no. of UCA elements (N) needed to generate a ripple-free radiation pattern based on the UCA antenna factor. Additionally, the significance of UCA radius and observational distance (the field plane-UCA plane gap) on the phase distribution and radiation pattern from OAM mode 1 to 5 is graphically evaluated and optimized. The MATLAB simulations compute the electric field phase distribution pattern (EFPDP) and normalized radiation pattern (NRP) at 76 GHz. The method predicts the peak, side lobes, and comparable radiation patterns of the radiation pattern, offering an effective means of optimizing OAM modes and analysing trade-offs.
References
Albreem, M. A. M. (2015). 5G wireless communication systems: Vision and challenges. In Proc. Int. Conf. Comput., Commun., Control Technol. (I4CT), Kuching, Malaysia, Apr. 2015, pp. 493-497. https://doi.org/10.1109/I4CT.2015.7219627
Bai, Q., Tennant, A., & Allen, B. (2014). Experimental circular phased array for generating OAM radio beams. Electronics Letters, 50(20), 1414–1415. https://doi.org/10.1049/el.2014.2860
Chen, M. L. N., Jiang, L. J., & Sha, W. E. I. (2018). Orbital angular momentum generation and detection by Geometric-Phase based metasurfaces. Applied Sciences, 8(3), 362.
https://doi.org/10.3390/app8030362
Chen, R., Zhou, H., Moretti, M., Wang, X., & Li, J. (2019). Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications. Physics.app-ph, 1(1), 91–106.
https://arxiv.org/pdf/1903.07818.pdf
Fang, L., & Henderson, R. M. (2019a). Uniform Millimeter-Wave OAM Dipole Array with Reflector. Paper presented at 2019 ICC-OAM workshop, Shanghai, China. https://doi.org/10.1109/ICCW.2019.8756896
Fang, L., & Henderson, R. M. (2019b). Uniform Circular Array Factor Techniques to Optimize Orbital Angular Momentum Modes Designed With Dipole Antennas at E-band. Presented at 49th European Microwave Conf., Paris, France, 1-3 Oct. 2019, pp. 149- 152. https://doi.org/10.23919/EuMC.2019.8910954
Fang, L., Yao, H., & Henderson, R. M. (2017). OAM antenna arrays at E-band. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 658-661. https://doi.org/10.1109/MWSYM.2017.8058655
Guo, Z., & Yang, G. (2017). Radial uniform circular antenna array for Dual-Mode OAM communication. IEEE Antennas and Wireless Propagation Letters, 16, 404–407. https://doi.org/10.1109/lawp.2016.2581204
Hassan, M. H., Al-Mulla, M., Sievert, B., Rennings, A., & Erni, D. (2020). Evaluation of different phased array approaches for orbital angular momentum beam steering, in 13th German Microw. Conf. (GeMiC 2020), Cottbus, Germany, 2020, pp. 1-4.
Hassan, M. H., Sievert, B., Svejda, J. T., Ahmed, A. M., Barowski, J., Rennings, A., Rolfes, I., Sezgin, A., & Erni, D. (2021). Beam divergence reduction of vortex waves with a tailored lens and a tailored reflector. IEEE Access, 9, 9800–9811. https://doi.org/10.1109/access.2021.3050043
Isakov, D., Wu, Y., Allen, B., Grant, P. S., Stevens, C., & Gibbons, G. J. (2020). Evaluation of the Laguerre–Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates. Royal Society Open Science, 7(7), 200493. https://doi.org/10.1098/rsos.200493
Li, C., Wang, H., & Hao, Z. (2014). Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes. Scientific Reports, 4(1). https://doi.org/10.1038/srep04814
Mohammadi, S. M., Daldorff, L. K. S., Bergman, J., Karlsson, R., Thidé, B., Forozesh, K., Carozzi, T. D., & Isham, B. (2010). Orbital Angular Momentum in Radio—A System Study. IEEE Transactions on Antennas and Propagation, 58(2), 565–572. https://doi.org/10.1109/tap.2009.2037701
Turnbull, G. A., Robertson, D. A., Smith, G., Allen, L. J., & Padgett, M. J. (1996). The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Optics Communications, 127(4–6), 183–188.
https://doi.org/10.1016/0030-4018(96)00070-3
Xu, J., Guo, Y., Yang, P., Zhang, R., Zhai, X., Huang, S., & Bi, K. (2020). Recent progress on RF orbital angular momentum antennas. Journal of Electromagnetic Waves and Applications, 34(3), 275–300. https://doi.org/10.1080/09205071.2019.1708814
Yao, H. et al. (2017). Experimental Demonstration of a Dual-channel E-band Communication Link using Commercial Impulse Radios with Orbital Angular Momentum Multiplexing. Presented at the 2017 IEEE RWS, Phoenix, AZ, Jan. 15-18, 2017. https://doi.org/10.1109/RWS.2017.7885943
Yu, S., Li, L., Shi, G., Zhu, C., & Shi, Y. (2016). Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Applied Physics Letters, 108(24). https://doi.org/10.1063/1.4953786