Isolation, Identification and in-Silico Characterization of Bioactive Peptide from the Venom Sac of Conus inscriptus

  • Vidyalatha Jakkana Department of Biology, Zilla Parishad High School, Vaddadi, Visakhapatnam, Andhra Pradesh, India http://orcid.org/0009-0003-3397-7846
  • Shanti Prabha Yamala Department of Zoology, Dr. V.S. Krishana Govt. Degree & PG College (Autonomous), Visakhapatnam, Andhra Pradesh, India http://orcid.org/0009-0006-9198-5969
Keywords: Antioxidant activity, Anti-inflammatory activity, PMF, SOPMA, Phyre2, Conotoxin

Abstract

Nature has been the source of new medications since ancient times, and at least half of all commercialised pharmaceuticals have been made from renewable resources to treat various illnesses, including pain, inflammation, and infection. In recent years, interest has risen in bioprospecting of new bioactive peptides, especially for medical and health-related applications. Therefore, the production of functional meals is starting to get recognition for its potential to enhance quality of life when combined with a healthy lifestyle. In view of this, the current work aimed to isolate, purify, and identify bioactive peptides from Conus inscriptus venom sac protein extracts, with an emphasis on antioxidant and anti-inflammatory properties. The findings reveal that the DPPH radical scavenging activity, albumin denaturation, and HRBC membrane stabilisation inhibition activities of Conus inscriptus venom sac crude protein extracts are 23.76±2.4, 66.23±3.1, and 57.32±2.6% respectively. Secondary screening of purified protein fractions obtained through sephadex G100 gel filtration exhibited increased anti-inflammatory efficacy from fractions 19 to 23. Electrophoresis and PMF analysis revealed that the purified anti-inflammatory peptide was homogenous with a molecular weight of 12 KDa, and it was identified as a conotoxin MI15b precursor. The 3D model of conotoxin exhibits the highest similarity with template c6nk9A with a confidence of 54.1%, and its function was predicted as a potassium ion channel inhibitor. The findings of the Insilco characterisation of the conotoxin MI15b precursor concluded that this protein might serve as an anti-inflammatory agent and may be responsible for therapeutic actions in the medical management of many inflammatory-related disorders.

References

Adams, D. J., Alewood, P. F., Craik, D. J., Drinkwater, R. D., & Lewis, R. J. (1999). Conotoxins and their potential pharmaceutical applications. Drug Development Research, 46(3‐4), 219-234. https://doi.org/10.1002/(SICI)1098-2299.

Ayoola, G. A., Ipav, S. S., Sofidiya, M. O., Adepoju-Bello, A. A., Coker, H. A., & Odugbemi, T. O. (2008). Phytochemical screening and free radical scavenging activities of the fruits and leaves of Allanblackia floribunda Oliv (Guttiferae). International Journal of Health Research, 1(2), 87-93. https://doi.org/10.4314/ijhr.v1i2.47920.

Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic acids Research, 28(1), 45-48. https://doi.org/10.1093/nar/28.1.45.

Bansal, H., Narang, D., & Jabalia, N. (2014). Computational characterization of antifreeze proteins of Typhula ishikariensis – gray snow mould. Journal of Proteins and Proteomics, 5(4), 169-176.

Baskaran Sanjeevi, S. (2001). Studies on Ecobiology of the Spider Conch Lambis lambis (Linne, 1758) (Gastropoda: Prosbranchia: Strombidae) from the Mandapam waters, southeast coast of India. Ph.D. Thesis, Annamalai University, India.

Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27(3), 343-350. https://doi.org/10.1093/bioinformatics/btq662.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer. F., Gallo, C. T., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 12(42), W252-8. https://doi.org/10.1093/nar/gku340.

Buxbaum, E. (2007). Fundamentals of protein structure and function (Vol. 31). New York: Springer.

Chakrabarti, S., Jahandideh, F., & Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Research International, Article ID 608979, 11 pages. https://doi.org/10.1155/2014/608979.

Dharmaraj, S. (2011). Study of L-asparaginase production by Streptomyces noursei MTCC 10469, isolated from marine sponge Callyspongia diffusa. Iranian Journal of Biotechnology, 9(2), 102-108.

Dhevagi, P., & Poorani, E. (2016). L-Asparaginase from Marine Actinomycetes of Thoothukudi Coastal Ecosystem. International Journal of Current Microbiology and Applied Sciences, 5(7), 295-306. http://dx.doi.org/10.20546/ijcmas.2016.507.031.

Dziki, D., Gawlik-Dziki, U., & Biernacka, B. (2019). Cistus incanus L. as an innovative functional. Foods, 8, 1–12. https://doi.org/10.3390/foods8080349.

Ekin, I., & Sesen, R. (2018). Molluscs: their usage as nutrition, medicine, aphrodisiac, cosmetic, jewellery, cowry, pearl, accessory and so on from history to today. Middle East Journal of Science, 4(1), 45-51. https://doi.org/10.23884/mejs.2018.4.1.06.

El-Zawawy, N.A., & Mona, M.M. (2021). Antimicrobial efficacy of Egyptian Eremina desertorum and Helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Scientific Reports, 11(1), p.24317.

Englard, S., & Seifter, S. (1990). Precipitation techniques. Methods in Enzymology, 182, 285-300. https://doi.org/10.1016/0076-6879(90)82024-v.

Ferreira, R. R., Fornazier, R. F., Vitoria, A. P., Lea, P. J., & Azevedo, R.A. (2002). Changes in antioxidant enzyme activities in soybean under cadmium stress. Journal of Plant Nutrition, 25(2), 327-342. https://doi.org/10.1081/PLN-100108839.

Ferrero, M. L., Nielsen, O. H., Andersen, P. S., & Girardin, S. E. (2007). Chronic Inflammation: Importance of NOD2 and NALP3 in Interleukin-1 Beta Generation. Journal of Clinical and Experimental Immunology, 147(2), 227-35. https://doi.org/10.1111/j.1365-2249.2006.03261.x.

Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6), 681-684. https://doi.org/10.1093/bioinformatics/11.6.681.

Gill, S. C., & Von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182(2), 319-326. https://doi.org/10.1016/0003-2697(89)90602-7.

Green, A. A., & Hughes, W. L. (1955). Protein solubility on the basis of solubility in aqueous solutions of salts and organic solvents. Methods Enzymology, 1, 67–90.

Guruprasad, K., Reddy, B.V.P., & Pandit, M.W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155-164. https://doi.org/10.1093/protein/4.2.155.

Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895-8.

Kelley, L., Mezulis, S., & Yates, C. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053.

Krishnaraju, A. V., Rao, C. V., Rao, T. V., Reddy, K. N., & Trimurtulu, G., (2009). In vitro and in vivo antioxidant activity of Aphanamixis polystachya bark. American Journal of Infectious Diseases, 5(2), 60-67. https://doi.org/10.3844/ajidsp.2009.60.67.

Krishnasamy, L., Masilamani selvam, M., & Jayanthi, K. (2015). Novel in Silico approach of Anticancer activity by inhibiting Hemopexin Proteins with Indigofera aspalathoides plant constituents at active site. Asian Journal of Pharmaceutical and Clinical Research, 8(3), 159-164.

Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680– 685. https://doi.org/10.1038/227680a0.

Lang, T., Klasson, S., & Larsson. E. (2016). Searching the evolutionary origin of epithelial mucus protein components mucins and FCGBP. Molecular Biology and Evolution, 33(8), 1921–36. https://doi.org/10.1093/molbev/msw066.

Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056-1100. doi: 10.3390/md9061056.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. PMID: 14907713.

Mann, M., Hendrickson, R. C., Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Annual Review of Biochemistry, 70, 437–473. https://doi.org/10.1146/annurev.biochem.70.1.437.

Mensor, L. L., Menezes, F. S., Leitao, G. G., Reis, A. S., Santos, T. C. D., Coube, C. S., & Leitao, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130. https://doi.org/10.1002/ptr.687.

Murray, B. A., & FitzGerald, R. J. (2007). Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Current Pharmaceutical Design, 13(8), 773-791. https://doi.org/10.2174/138161207780363068.

Neelamathi, E., Vasumathi, E., Bagyalakshmi, S., & Kannan, R. (2009). Insilico prediction of structure and functional aspects of a hypothetical protein of Neurospora crassa. Journal of Cell and Tissue Research, 9(3), 1989–94.

Nirmal, A. (1995). Biochemical studies on prosobranchian gastropods Babylonia zeylonica (Neogastropods: Buccinidae: Fasciolariidae). M.Sc. Dissertation, Annamalai University.

Olivera, B. M. (1997). E E Just lecture, 1996—Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuro pharmacology. Molecular Biology of the Cell, 8(11), 2101–2109. https://doi.org/10.1091/mbc.8.11.2101.

Padmanabhan, P., & Jangle, S.N. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International Journal of Basic and Applied Medical Sciences, 2(1), 109-116.

Perpelek, M., Tamburaci, S., Aydemir, S., Tihminlioglu, F., Baykara, B., Karakasli, A., & Havitcioglu, H. (2021). Bioactive snail mucus-slime extract loaded chitosan scaffolds for hard tissue regeneration: The effect of mucoadhesive and antibacterial extracts on physical characteristics and bioactivity of chitosan matrix. Biomedical Materials, 16(6), p.065008.

Pihlanto-Leppala, A. (2000). Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends in Food Science & Technology, 11(9-10), 347-356. https://doi.org/10.1016/S0924-2244(01)00003-6.

Reda, F. M. (2015). Kinetic properties of Streptomyces canarius L-glutaminase and its anticancer efficiency. Brazilian Journal of Microbiology, 46(4), 957–968. https://doi.org/10.1590/S1517-838246420130847.

Ricci, A., Gallorini, M., & Feghali, N. (2023). Snail slime extracted by a cruelty free method preserves viability and controls infammation occurrence: a focus on fbroblasts. Molecules, 28(3),12-22. https://doi.org/10.3390/molecules28031222.

Rizzi, V., Gubitosa, J., & Fini, P. (2021). Snail slime-based gold nanoparticles: an interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. Journal of Photochemistry and Photobiology, 224, 112309. https://doi.org/10.1016/j.jphotobiol.2021.112309.

Rogers, S., Wells, R., & Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science, 234, 364-368. http://dx.doi.org/10.1126/science.2876518.

Sakat, S., Juvekar, A. R., & Gambhire, M. N. (2010). In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. International Journal Pharmacy and Pharmacological Sciences, 2(1), 146-155.

Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual. 3rd Edition, Vol. 1, Cold Spring Harbor Laboratory Press, New York.

Saravanan, R., Sambasivam, S., Shanmugam, A., Kumar, D. S., Vanan, T., & Nazeer, R. A. (2009). Isolation, purification and biochemical characterization of conotoxin from Conus figulinus Linnaeus (1758). Indian Journal of Biotechnology, 8(3), 266-271.

Shinde, U. A., Phadke, A. S., Nari, A. M., Mungantiwar, A. A., Dikshit, V. J., Saraf, M. N. (1999). Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil. Journal of Ethnopharmacology, 65(1), 21-27. https://doi.org/10.1016/s0378-8741(98)00150-0.

Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362. https://doi.org/10.1002/prot.340170404.

Sohail, M., Ahmad, A., & Ahmed Khan, S. (2011). Production of cellulases from Alternaria sp. ms28 and their partial characterization. Pakistan Journal of Botany, 43(6), 3001–3006.

Szymanowska, U., & Baraniak, B. (2019). Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries. Antioxidants, 8, 299. https://doi.org/10.3390/antiox8080299.

Terlau, H., & Olivera, B. M. (2004). Conus venoms: a rich source of novel ion channel - targeted peptides. Physiological Reviews, 84, 41–68. https://doi.org/10.1152/physrev.00020.2003.

Tryon, G.W. (1879). Manual of Conchology, Structural and Systematic: Cephalopoda. 1879 (Vol. 1). Author, Academy of Natural Sciences.

Vane, J. R., & Botting, R. M. (1998). Anti-inflammatory Drugs and Their Mechanism of Action. Inflammation Research, 47, (Suppl 2), S78-87. https://doi.org/10.1007/s000110050284.

Wakayama, M., Yamagata, T., Kamemura, A., Bootim, N., Yano, S., Tachiki, T., Yoshimune, K., & Moriguchi, M. (2005). Characterization of salt-tolerant glutaminase from Stenotrophomonas maltophilia NYW-81 and its application in Japanese soy sauce fermentation. Journal of Industrial Microbiology and Biotechnology, 32(9), 383–390. https://doi.org/10.1007/s10295-005-0257-7.

Wang, C. Z., & Chi, C. W. (2004). Conus peptides--a rich pharmaceutical treasure. Acta Biochimica et Biophysica Sinica (Shanghai), 36(11), 713-723. https://doi.org/10.1093/abbs/36.11.713.

Wang, N., Manabe, Y., Sugawara, T., Paul, N. A., & Zhao, J. (2018). Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermedium. Food Chemistry, 1(242), 247– 255. https://doi.org/10.1016/j.foodchem.2017.09.075.

Wiya, C., Nantarat, N., & Saenphet, K. (2020). Antiinflammatory Activity of Slime Extract from Giant African Snail (Lissachatina fulica). Indian Journal of Pharmaceutical Sciences, 82(3), 499-505.

Zaky, A. A., Liu, Y., Han, P., Chen, Z., Jia, Y. (2020). Effect of pepsin trypsin invitro gastro-intestinal digestion on the antioxidant capacities of ultra-filtrated rice bran protein hydrolysates (molecular weight>10kDa;3–10kDa, and<3kDa). International Journal of Peptide Research and Therapeutics, 26, 1661–1667. https://doi.org/10.1007/s10989-019-09977-2.

Zambare, V. P., Nilegaonkar, S. S., & Kanekar, P. P. (2004). Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent. World Journal of Microbiology and Biotechnology, 23, 1569-1574. http://dx.doi.org/10.1007/s11274-007-9402-y.

Published
2024-04-30
How to Cite
Jakkana, V., & Yamala, S. (2024). Isolation, Identification and in-Silico Characterization of Bioactive Peptide from the Venom Sac of Conus inscriptus. International Journal of Experimental Research and Review, 38, 1-14. https://doi.org/10.52756/ijerr.2024.v38.001
Section
Articles