Performance Evaluation and Cost Analysis of Photovoltaic Thermal (PVT) System Using the Triangular Shape of Absorber with Different Water-based Nanofluids as Coolants
DOI:
https://doi.org/10.52756/ijerr.2024.v39spl.004Keywords:
Cost analysis, Electrical and thermal efficiency, Nanofluids, PVT system, Pressure drop, Solar energyAbstract
The worldwide energy demand is continuously increasing, prompting experts to recommend using alternative energy sources to conserve natural gas, fossil fuels, and electricity. Photovoltaic thermal (PVT) systems emerge as a viable solution, generating electrical and heat energy simultaneously while freeing carbon dioxide (CO2) emissions. These systems offer sustainable green technology for supplying renewable electricity and heat to commercial and domestic applications. This study delves into the performance of a photovoltaic thermal (PVT) system featuring an isosceles triangular-shaped absorber design. It considers size variations of 0.02 and 0.03 m while maintaining a constant aspect ratio. Water-based nanofluids such as CuO/w, MgO/w, and ZnO/w, with a nanoparticle volume portion of 4%, alongside pure water as a coolant, are utilized with a variation of mass flow rate ranges from 0.028 kg/s to 0.11 kg/s, allowing for an exploration of its impact on performance parameters. A numerical model is established to comprehensively analyze the system's performance, applying an energy balance equation to its components. An economic analysis is also conducted to assess the system's cost-effectiveness and determine the energy payback time. Results indicate that the highest overall daily performance is achieved with ZnO/w nanofluid at a mass flow rate of 0.112 kg/s and a fluid flow channel size of 0.02 m. Comparatively, compared to other nanofluids and pure water, the average electrical, thermal, and overall performances achieved are 14.57%, 22.36%, and 36.40%, respectively. The energy payback periods are 5.5, 5.2, 5.4, and 4.8 years for CuO/w, MgO/w, ZnO/w, and Pure water, respectively. Furthermore, it is observed that a higher mass flow rate correlates with higher system performance parameters.
References
Agrawal, S., & Tiwari, G. (2015). Performance analysis in terms of carbon credit earned on annualized uniform cost of glazed hybrid photovoltaic thermal air collector. Solar Energy, 115, 329-340. https://doi.org/10.1016/j.solener.2015.02.030
Al-Shamani, A. N., Sopian, K., Mat, S., Hasan, H. A., Abed, A. M., & Ruslan, M. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, 124, 528-542. https://doi.org/10.1016/j.enconman.2016.07.052
Al-Waeli, A. H., Sopian, K., Kazem, H. A., Yousif, J. H., Chaichan, M. T., Ibrahim, A., Mat, S., & Ruslan, M. H. (2018). Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Solar Energy, 162, 378-396. https://doi.org/10.1016/j.solener.2018.01.026
Azad, A., Parvin, S., & Hossain, T. (2024). Performance evaluation of nanofluid-based photovoltaic thermal (PVT) system with regression analysis. Heliyon, 10(7). https://doi.org/10.1016%2Fj.heliyon.2024.e29252
Bin Ishak, M. A. A., Ibrahim, A., Sopian, K., Fauzan, M. F., Rahmat, A. A., & Bt Yusaidi, N. J. (2023).Performance and economic analysis of a reversed circular flow jet impingement bifacial PVT solar collector. International Journal of Renewable Energy Development, 12(4). https://doi.org/10.14710/ijred.2023.54348
Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. The Journal of chemical physics, 20(4), 571-571. https://doi.org/10.1063/1.1700493
Buonomano, A., Calise, F., Palombo, A., & Vicidomini, M. (2019). Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors. Renewable Energy, 137, 109-126. https://doi.org/10.1016/j.renene.2017.11.060
Cdivine. Specification of PV panel. Retrieved 12-10-2023 from https://cdivine.com/product/250-watts-mono-crystalline-panel/
Charalambous, P., Maidment, G. G., Kalogirou, S. A., & Yiakoumetti, K. (2007). Photovoltaic thermal (PV/T) collectors: A review. Applied Thermal Engineering, 27(2-3), 275-286. https://doi.org/10.1016/j.applthermaleng.2006.06.007
Chow, T. (2003). Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Solar Energy, 75(2), 143-152. https://doi.org/10.1016/j.solener.2003.07.001
Deo, N. S., Chander, S., & Saini, J. (2016). Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs. Renewable Energy, 91, 484-500. https://doi.org/10.1016/j.renene.2016.01.067
Deshmukh, K., & Karmare, S. (2021). A review on convective heat augmentation techniques in solar thermal collector using nanofluid. J Therm Eng 7 (5): 1257–1266. In. 10.18186/thermal.978064
Diwania, S., Siddiqui, A. S., Agrawal, S., & Kumar, R. (2021). Modeling and assessment of the thermo-electrical performance of a photovoltaic-thermal (PVT) system using different nanofluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1-18. https://doi.org/10.1007/s40430-021-02909-6
Gao, M., Zhu, L., Peh, C. K., & Ho, G. W. (2019). Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 12(3), 841-864. https://doi.org/10.1039/C8EE01146J
Gelis, K., Ozbek, K., Ozyurt, O., & Celik, A. N. (2023). Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach. Applied Thermal Engineering, 219, 119609. https://doi.org/10.1016/j.applthermaleng.2022.119609
Gundala, S., Basha, M. M., Madhurima, V., Praveena, N., & Kumar, S. V. (2021). An experimental performance on solar photovoltaic thermal collector with nanofluids for sustainable development. Journal of Nanomaterials, 2021, 1-6. https://doi.org/10.1155/2021/6946540
Gunnasegaran, P., Mohammed, H., Shuaib, N., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. International Communications in Heat and Mass Transfer, 37(8), 1078-1086. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014
Gupta, A., Agrawal, S., & Pal, Y. (2022). Energy and exergy performance evaluation of a novel photovoltaic-thermoelectric system combined with tube and sheet serpentine water collector. International Journal of Green Energy, 19(4), 365-379. https://doi.org/10.1080/15435075.2021.1946814
Hamilton, R. L., & Crosser, O. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3), 187-191. https://doi.org/10.1021/i160003a005
Han, Z., Liu, K., Li, G., Zhao, X., & Shittu, S. (2021). Electrical and thermal performance comparison between PVT-ST and PV-ST systems. Energy, 237, 121589. https://doi.org/10.1016/j.energy.2021.121589
Hegedus, S. S., & Luque, A. (2003). Status, trends, challenges and the bright future of solar electricity from photovoltaics. Handbook of photovoltaic science and engineering, 1-43. http://dx.doi.org/10.1002/0470014008.ch1
Herrando, M., Markides, C. N., & Hellgardt, K. (2014). A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Applied Energy, 122, 288-309. https://doi.org/10.1016/j.apenergy.2014.01.061
Hissouf, M., Najim, M., & Charef, A. (2020a). Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Solar Energy, Performance and economic analysis of a reversed circular flow jet impingement bifacial PVT solar collector. International Journal of Renewable Energy Development, 12(4). https://doi.org/10.14710/ijred.2023.54348
Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. The Journal of chemical physics, 20(4), 571-571. https://doi.org/10.1063/1.1700493
Buonomano, A., Calise, F., Palombo, A., & Vicidomini, M. (2019). Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors. Renewable Energy, 137, 109-126. https://doi.org/10.1016/j.renene.2017.11.060
Cdivine. Specification of PV panel. Retrieved 12-10-2023 from https://cdivine.com/product/250-watts-mono-crystalline-panel/
Charalambous, P., Maidment, G. G., Kalogirou, S. A., & Yiakoumetti, K. (2007). Photovoltaic thermal (PV/T) collectors: A review. Applied Thermal Engineering, 27(2-3), 275-286. https://doi.org/10.1016/j.applthermaleng.2006.06.007
Chow, T. (2003). Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Solar Energy, 75(2), 143-152. https://doi.org/10.1016/j.solener.2003.07.001
Deo, N. S., Chander, S., & Saini, J. (2016). Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs. Renewable Energy, 91, 484-500. https://doi.org/10.1016/j.renene.2016.01.067
Deshmukh, K., & Karmare, S. (2021). A review on convective heat augmentation techniques in solar thermal collector using nanofluid. J Therm Eng 7 (5): 1257–1266. In. 10.18186/thermal.978064
Diwania, S., Siddiqui, A. S., Agrawal, S., & Kumar, R. (2021). Modeling and assessment of the thermo-electrical performance of a photovoltaic-thermal (PVT) system using different nanofluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1-18. https://doi.org/10.1007/s40430-021-02909-6
Gao, M., Zhu, L., Peh, C. K., & Ho, G. W. (2019). Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 12(3), 841-864. https://doi.org/10.1039/C8EE01146J
Gelis, K., Ozbek, K., Ozyurt, O., & Celik, A. N. (2023). Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach. Applied Thermal Engineering, 219, 119609. https://doi.org/10.1016/j.applthermaleng.2022.119609
Gundala, S., Basha, M. M., Madhurima, V., Praveena, N., & Kumar, S. V. (2021). An experimental performance on solar photovoltaic thermal collector with nanofluids for sustainable development. Journal of Nanomaterials, 2021, 1-6. https://doi.org/10.1155/2021/6946540
Gunnasegaran, P., Mohammed, H., Shuaib, N., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. International Communications in Heat and Mass Transfer, 37(8), 1078-1086. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014
Gupta, A., Agrawal, S., & Pal, Y. (2022). Energy and exergy performance evaluation of a novel photovoltaic-thermoelectric system combined with tube and sheet serpentine water collector. International Journal of Green Energy, 19(4), 365-379. https://doi.org/10.1080/15435075.2021.1946814
Hamilton, R. L., & Crosser, O. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3), 187-191. https://doi.org/10.1021/i160003a005
Han, Z., Liu, K., Li, G., Zhao, X., & Shittu, S. (2021). Electrical and thermal performance comparison between PVT-ST and PV-ST systems. Energy, 237, 121589. https://doi.org/10.1016/j.energy.2021.121589
Hegedus, S. S., & Luque, A. (2003). Status, trends, challenges and the bright future of solar electricity from photovoltaics. Handbook of photovoltaic science and engineering, 1-43. http://dx.doi.org/10.1002/0470014008.ch1
Herrando, M., Markides, C. N., & Hellgardt, K. (2014). A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Applied Energy, 122, 288-309. https://doi.org/10.1016/j.apenergy.2014.01.061
Hissouf, M., Najim, M., & Charef, A. (2020a). Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Solar Energy, 199, 115-127. https://doi.org/10.1016/j.solener.2020.01.083
Hissouf, M., Najim, M., & Charef, A. (2020b). Performance of a photovoltaic-thermal solar collector using two types of working fluids at different fluid channels geometry. Renewable Energy, 162, 1723-1734. 1734. https://doi.org/10.1016/j.renene.2020.09.097
Hussain, M. I., & Kim, J.-T. (2018). Conventional fluid-and nanofluid-based photovoltaic thermal (PV/T) systems: A techno-economic and environmental analysis. International Journal of Green Energy, 15(11), 596-604. https://doi.org/10.1080/15435075.2018.1525558
Javadi, F. S., Saidur, R., & Kamalisarvestani, M. (2013). Investigating performance improvement of solar collectors by using nanofluids. Renewable and Sustainable Energy Reviews, 28, 232-245. https://doi.org/10.1016/j.rser.2013.06.053
Jia, Y., Ran, F., Zhu, C., & Fang, G. (2020). Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Solar Energy, 196, 625-636. https://doi.org/10.1016/j.solener.2019.12.069
Jidhesh, P., Arjunan, T., & Gunasekar, N. (2021). Thermal modeling and experimental validation of semitransparent photovoltaic-thermal hybrid collector using CuO nanofluid. Journal of Cleaner Production, 316, 128360. https://doi.org/10.1016/j.jclepro.2021.128360
Kamthania, D., Nayak, S., & Tiwari, G. (2011). Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating. Energy and Buildings, 43(9), 2274-2281. https://doi.org/10.1016/j.enbuild.2011.05.007
Kazem, H. A., Al-Waeli, A. H., Chaichan, M. T., Al-Waeli, K. H., Al-Aasam, A. B., & Sopian, K. (2020). Evaluation and comparison of different flow configurations PVT systems in Oman: A numerical and experimental investigation. Solar Energy, 208, 58-88. https://doi.org/10.1016/j.solener.2020.07.078
Khan, A. A., Danish, M., Rubaiee, S., & Yahya, S. M. (2022). Insight into the investigation of Fe3O4/SiO2 nanoparticles suspended aqueous nanofluids in hybrid photovoltaic/thermal system. Cleaner Engineering and Technology, 11, 100572. https://doi.org/10.1016/j.clet.2022.100572
Khanjari, Y., Pourfayaz, F., & Kasaeian, A. (2016). Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management, 122, 263-278. https://doi.org/10.1016/j.enconman.2016.05.083
Kong, X., Zhang, Y., Wu, J., & Pan, S. (2022). Numerical Study on the Optimization Design of Photovoltaic/Thermal (PV/T) Collector with Internal Corrugated Channels. International Journal of Photoenergy. https://doi.org/10.1155/2022/8632826
Lee, J. H., Hwang, S. G., & Lee, G. H. (2019). Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids. Energies, 12(16), 3063. https://doi.org/10.3390/en12163063
Madas, S. R., Narayanan, R., & Gudimetla, P. (2023). Numerical investigation on the optimum performance output of photovoltaic thermal (PVT) systems using nano-copper oxide (CuO) coolant. Solar Energy, 255, 222-235. https://doi.org/10.1016/j.solener.2023.02.035
Madhesh, D., & Kalaiselvam, S. (2015). Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications. Journal of Experimental Nanoscience, 10(15), 1194-1213. https://doi.org/10.1080/17458080.2014.989551
Mahmood Alsalame, H. A., Lee, J. H., & Lee, G. H. (2021). Performance Evaluation of a Photovoltaic Thermal (PVT) system using nanofluids. Energies, 14(2), 301. https://doi.org/10.3390/en14020301
Nasrin, R., Rahim, N. A., Fayaz, H., & Hasanuzzaman, M. (2018). Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy, 121, 286-300. https://doi.org/10.1016/j.renene.2018.01.014
Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170. https://doi.org/10.1080/08916159808946559
Power, M. O. (2023). Report of power genration Retrieved 15- 10 -2023 from https://powermin.gov.in/
Rejeb, O., Dhaou, H., & Jemni, A. (2015). Parameters effect analysis of a photovoltaic thermal collector: Case study for climatic conditions of Monastir, Tunisia. Energy Conversion and Management, 89, 409-419. https://doi.org/10.1016/j.enconman.2014.10.018
Resources, N. E. (2023). Provides solar and meteorological data sets from NASA research for support of renewable energy, building energy efficiency and agricultural needs. Retrieved 10-10-2023 from https://power.larc.nasa.gov/data-access-viewer/
Agrawal, S., & Tiwari, G. (2015). Performance analysis in terms of carbon credit earned on annualized uniform cost of glazed hybrid photovoltaic thermal air collector. Solar Energy, 115, 329-340. https://doi.org/10.1016/j.solener.2015.02.030
Al-Shamani, A. N., Sopian, K., Mat, S., Hasan, H. A., Abed, A. M., & Ruslan, M. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, 124, 528-542. https://doi.org/10.1016/j.enconman.2016.07.052
Al-Waeli, A. H., Sopian, K., Kazem, H. A., Yousif, J. H., Chaichan, M. T., Ibrahim, A., Mat, S., & Ruslan, M. H. (2018). Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Solar Energy, 162, 378-396. https://doi.org/10.1016/j.solener.2018.01.026
Azad, A., Parvin, S., & Hossain, T. (2024). Performance evaluation of nanofluid-based photovoltaic thermal (PVT) system with regression analysis. Heliyon, 10(7). https://doi.org/10.1016%2Fj.heliyon.2024.e29252
Bin Ishak, M. A. A., Ibrahim, A., Sopian, K., Fauzan, M. F., Rahmat, A. A., & Bt Yusaidi, N. J. (2023). Performance and economic analysis of a reversed circular flow jet impingement bifacial PVT solar collector. International Journal of Renewable Energy Development, 12(4). https://doi.org/10.14710/ijred.2023.54348
Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. The Journal of chemical physics, 20(4), 571-571. https://doi.org/10.1063/1.1700493
Buonomano, A., Calise, F., Palombo, A., & Vicidomini, M. (2019). Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors. Renewable Energy, 137, 109-126. https://doi.org/10.1016/j.renene.2017.11.060
Cdivine. Specification of PV panel. Retrieved 12-10-2023 from https://cdivine.com/product/250-watts-mono-crystalline-panel/
Charalambous, P., Maidment, G. G., Kalogirou, S. A., & Yiakoumetti, K. (2007). Photovoltaic thermal (PV/T) collectors: A review. Applied Thermal Engineering, 27(2-3), 275-286. https://doi.org/10.1016/j.applthermaleng.2006.06.007
Chow, T. (2003). Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Solar Energy, 75(2), 143-152. https://doi.org/10.1016/j.solener.2003.07.001
Deo, N. S., Chander, S., & Saini, J. (2016). Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs. Renewable Energy, 91, 484-500. https://doi.org/10.1016/j.renene.2016.01.067
Deshmukh, K., & Karmare, S. (2021). A review on convective heat augmentation techniques in solar thermal collector using nanofluid. J Therm Eng 7 (5): 1257–1266. In. 10.18186/thermal.978064
Diwania, S., Siddiqui, A. S., Agrawal, S., & Kumar, R. (2021). Modeling and assessment of the thermo-electrical performance of a photovoltaic-thermal (PVT) system using different nanofluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1-18. https://doi.org/10.1007/s40430-021-02909-6
Gao, M., Zhu, L., Peh, C. K., & Ho, G. W. (2019). Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 12(3), 841-864. https://doi.org/10.1039/C8EE01146J
Gelis, K., Ozbek, K., Ozyurt, O., & Celik, A. N. (2023). Multi-objective optimization of a photovoltaic thermal system with different water based nanofluids using Taguchi approach. Applied Thermal Engineering, 219, 119609. https://doi.org/10.1016/j.applthermaleng.2022.119609
Gundala, S., Basha, M. M., Madhurima, V., Praveena, N., & Kumar, S. V. (2021). An experimental performance on solar photovoltaic thermal collector with nanofluids for sustainable development. Journal of Nanomaterials, 2021, 1-6. https://doi.org/10.1155/2021/6946540
Gunnasegaran, P., Mohammed, H., Shuaib, N., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. International Communications in Heat and Mass Transfer, 37(8), 1078-1086. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014
Gupta, A., Agrawal, S., & Pal, Y. (2022). Energy and exergy performance evaluation of a novel photovoltaic-thermoelectric system combined with tube and sheet serpentine water collector. International Journal of Green Energy, 19(4), 365-379. https://doi.org/10.1080/15435075.2021.1946814
Hamilton, R. L., & Crosser, O. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3), 187-191. https://doi.org/10.1021/i160003a005
Han, Z., Liu, K., Li, G., Zhao, X., & Shittu, S. (2021). Electrical and thermal performance comparison between PVT-ST and PV-ST systems. Energy, 237, 121589. https://doi.org/10.1016/j.energy.2021.121589
Hegedus, S. S., & Luque, A. (2003). Status, trends, challenges and the bright future of solar electricity from photovoltaics. Handbook of photovoltaic science and engineering, 1-43. http://dx.doi.org/10.1002/0470014008.ch1
Herrando, M., Markides, C. N., & Hellgardt, K. (2014). A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Applied Energy, 122, 288-309. https://doi.org/10.1016/j.apenergy.2014.01.061
Hissouf, M., Najim, M., & Charef, A. (2020a). Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Solar Energy, 199, 115-127. https://doi.org/10.1016/j.solener.2020.01.083
Hissouf, M., Najim, M., & Charef, A. (2020b). Performance of a photovoltaic-thermal solar collector using two types of working fluids at different fluid channels geometry. Renewable Energy, 162, 1723-1734. 1734. https://doi.org/10.1016/j.renene.2020.09.097
Hussain, M. I., & Kim, J.-T. (2018). Conventional fluid-and nanofluid-based photovoltaic thermal (PV/T) systems: A techno-economic and environmental analysis. International Journal of Green Energy, 15(11), 596-604. https://doi.org/10.1080/15435075.2018.1525558
Javadi, F. S., Saidur, R., & Kamalisarvestani, M. (2013). Investigating performance improvement of solar collectors by using nanofluids. Renewable and Sustainable Energy Reviews, 28, 232-245. https://doi.org/10.1016/j.rser.2013.06.053
Jia, Y., Ran, F., Zhu, C., & Fang, G. (2020). Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Solar Energy, 196, 625-636. https://doi.org/10.1016/j.solener.2019.12.069
Jidhesh, P., Arjunan, T., & Gunasekar, N. (2021). Thermal modeling and experimental validation of semitransparent photovoltaic-thermal hybrid collector using CuO nanofluid. Journal of Cleaner Production, 316, 128360. https://doi.org/10.1016/j.jclepro.2021.128360
Kamthania, D., Nayak, S., & Tiwari, G. (2011). Performance evaluation of a hybrid photovoltaic thermal double pass facade for space heating. Energy and Buildings, 43(9), 2274-2281. https://doi.org/10.1016/j.enbuild.2011.05.007
Kazem, H. A., Al-Waeli, A. H., Chaichan, M. T., Al-Waeli, K. H., Al-Aasam, A. B., & Sopian, K. (2020). Evaluation and comparison of different flow configurations PVT systems in Oman: A numerical and experimental investigation. Solar Energy, 208, 58-88. https://doi.org/10.1016/j.solener.2020.07.078
Khan, A. A., Danish, M., Rubaiee, S., & Yahya, S. M. (2022). Insight into the investigation of Fe3O4/SiO2 nanoparticles suspended aqueous nanofluids in hybrid photovoltaic/thermal system. Cleaner Engineering and Technology, 11, 100572. https://doi.org/10.1016/j.clet.2022.100572
Khanjari, Y., Pourfayaz, F., & Kasaeian, A. (2016). Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management, 122, 263-278. https://doi.org/10.1016/j.enconman.2016.05.083
Kong, X., Zhang, Y., Wu, J., & Pan, S. (2022). Numerical Study on the Optimization Design of Photovoltaic/Thermal (PV/T) Collector with Internal Corrugated Channels. International Journal of Photoenergy. https://doi.org/10.1155/2022/8632826
Lee, J. H., Hwang, S. G., & Lee, G. H. (2019). Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids. Energies, 12(16), 3063. https://doi.org/10.3390/en12163063
Madas, S. R., Narayanan, R., & Gudimetla, P. (2023). Numerical investigation on the optimum performance output of photovoltaic thermal (PVT) systems using nano-copper oxide (CuO) coolant. Solar Energy, 255, 222-235. https://doi.org/10.1016/j.solener.2023.02.035
Madhesh, D., & Kalaiselvam, S. (2015). Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications. Journal of Experimental Nanoscience, 10(15), 1194-1213. https://doi.org/10.1080/17458080.2014.989551
Mahmood Alsalame, H. A., Lee, J. H., & Lee, G. H. (2021). Performance Evaluation of a Photovoltaic Thermal (PVT) system using nanofluids. Energies, 14(2), 301. https://doi.org/10.3390/en14020301
Nasrin, R., Rahim, N. A., Fayaz, H., & Hasanuzzaman, M. (2018). Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy, 121, 286-300. https://doi.org/10.1016/j.renene.2018.01.014
Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170. https://doi.org/10.1080/08916159808946559
Power, M. O. (2023). Report of power genration Retrieved 15- 10 -2023 from https://powermin.gov.in/
Rejeb, O., Dhaou, H., & Jemni, A. (2015). Parameters effect analysis of a photovoltaic thermal collector: Case study for climatic conditions of Monastir, Tunisia. Energy Conversion and Management, 89, 409-419. https://doi.org/10.1016/j.enconman.2014.10.018
Resources, N. E. (2023). Provides solar and meteorological data sets from NASA research for support of renewable energy, building energy efficiency and agricultural needs. Retrieved 10-10-2023 from https://power.larc.nasa.gov/data-access-viewer/
Sani, E., Barison, S., Pagura, C., Mercatelli, L., Sansoni, P., Fontani, D., Jafrancesco, D., & Francini, F. (2010). Carbon nanohorns-based nanofluids as direct sunlight absorbers. Optics Express, 18(5), 5179-5187. https://doi.org/10.1364/OE.18.005179
Sardarabadi, M., & Passandideh-Fard, M. (2016). Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Solar energy materials and solar cells, 157, 533-542. https://doi.org/10.1016/j.solmat.2016.07.008
Sardarabadi, M., Passandideh-Fard, M., & Heris, S. Z. (2014). Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy, 66, 264-272. https://doi.org/10.1016/j.energy.2014.01.102
Somasundaram, S., & Tay, A. A. (2019). Performance study and economic analysis of photo-voltaic thermal system under real-life thermal loads in tropical climate. Sustainable Environment Research, 29, 1-10. https://doi.org/10.1186/s42834-019-0040-5
Tiwari, A., & Sodha, M. (2006). Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study. Renewable Energy, 31(15), 2460-2474.
https://doi.org/10.1016/j.renene.2005.12.002
Tiwari, A., Sodha, M., Chandra, A., & Joshi, J. (2006). Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Materials and Solar Cells, 90(2), 175-189. https://doi.org/10.1016/j.solmat.2005.03.002
Yu, C., Li, H., Chen, J., Qiu, S., Yao, F., & Liu, X. (2021). Investigation of the thermal performance enhancement of a photovoltaic thermal (PV/T) collector with periodically grooved channels. Journal of Energy Storage, 40, 102792. https://doi.org/10.1016/j.est.2021.102792
Zhou, J., Ke, H., & Deng, X. (2018). Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector. Solar Energy, 174, 735-742. https://doi.org/10.1016/j.solener.2018.09.063