Chemometric Techniques in the Assessment of Ambient Air Quality and Development of Air Quality Index of Coal Mining Complex: A Statistical Approach

Authors

DOI:

https://doi.org/10.52756/ijerr.2023.v36.018a

Keywords:

Multivariate technique, Opencast Coal Mine, Cluster Analysis, Factor Analysis, Multiple Linear Regression, Air Pollution Index

Abstract

This study aims to analyze the regional variation in the source of air pollution, identify the percentage contribution of each pollutant, and distribute the mass contribution of each source category using multivariate analysis. The nine air monitoring sites were successfully divided into three groups using hierarchical agglomerative cluster analysis (HACA) (clusters 1, 2, and 3). The collected meteorological data is non-parametric data for the years 2020–2021 which includes PM2.5, PM10, SO2, NO2, NO, NOx, CO, wind speed, humidity, wind direction, temperature, cloud cover, and surface radiation. The most major air pollution sources were identified using FA. Multiple linear regression (MLR) and principal component regression (PCR) were utilized to create an equation model explaining contaminants' impact in each cluster.  However, it was shown that the most important pollutants impacting the value of the air pollutant index (API) are gaseous pollutants (NOx and SO2) and particulate matter (PM10 and PM2.5). Gas and non-gas pollutants have a 65% influence on cluster 1 and meteorological conditions have a 35% effect. Cluster 3 is influenced by 65% particle and non-gas pollutants and 35% weather conditions, compared to Cluster 2 which is 100% affected by gas and particulate pollutants because of its spatial location. This study shows the value of the multivariate modeling technique in minimizing the time and expense associated with monitoring redundant stations and parameters.

References

Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K. & Muys, B. 2010. Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8), 1119-1130. https://doi.org/10.1016/j.atmosenv.2016.08.007

Aneja, V. P., Isherwood, A., & Morgan, P. (2012). Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmospheric Environment, 54, 496-501. https://doi.org/10.1016/j.atmosenv.2012.02.063

Ausati, S., & Amanollahi, J. (2016). Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2. 5. Atmospheric Environment, 142, 465-474. https://doi.org/10.1007/s11869-019-00779-5

Azid, A., Juahir, H., Ezani, E., Toriman, M.E., Endut, A., Rahman, M.N.A., Yunus, K., Kamarudin, M.K.A., Hasnam, C.N.C., Saudi, A.S.M. & Umar, R. 2015. Identification of the source of variation on the regional impact of air quality pattern using chemometrics. Aerosol and Air Quality Research, 15(4), 1545-1558. https://doi.org/10.4209/aaqr.2014.04.0073

Azid, A., Juahir, H., Toriman, M. E., Endut, A., Kamarudin, M. K. A., & Abd Rahman, M. N. (2015). Source apportionment of air pollution: a case study in Malaysia. Jurnal Teknologi, 72(1), 83-88. https://doi.org/10.11113/jt.v72.2934

Cowherd, C., Muleski, G. E., & Kinsey, J. S. (1988). Control of open fugitive dust sources. Final report (No. PB-89-103691/XAB). Midwest Research Inst., Kansas City, MO (USA).

Diana, A., Bertinetti, S., Abollino, O., Giacomino, A., Buoso, S., Favilli, L., ... & Malandrino, M. (2022). PM10 Element Distribution and Environmental-Sanitary Risk Analysis in Two Italian Industrial Cities. Atmosphere, 14(1), 48. https://doi.org/10.3390/atmos14010048

Dominick, D., Juahir, H., Latif, M.T., Zain, S.M. & Aris, A.Z. 2012. Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60, 172-181. https://doi.org/10.1016/j.atmosenv.2012.06.021

Dragović S, Mihailović N (2009) Analysis of mosses and topsoils for detecting sources of heavy metal pollution: multivariate and enrichment factor analysis. Environmental Monitoring and Assessment 157(1), 383-390. https://doi.org/10.1007/s10661-008-0543-8

Gang, X., Limin, J., Suli, Z., Man, Y., Xiaoming, L., Yuyao, H., ... & Ting, D. (2016). Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan. China. Journal of Atmosphere, 7(62), 2-18. https://doi.org/10.3390/atmos7050062

Ghose, M. K., & Majee, S. R. (2000). Assessment of dust generation due to opencast coal mining–an Indian case study. Environmental Monitoring and Assessment, 61, 257-265. https://doi.org/10.1023/A:1006127407401

Gocheva-Ilieva, S. G., Ivanov, A. V., Voynikova, D. S., & Boyadzhiev, D. T. (2014). Time series analysis and forecasting for air pollution in a small urban area: a SARIMA and factor analysis approach. Stochastic environmental Research and Risk Assessment, 28, 1045-1060. https://doi.org/10.1007/s00477-013-0800-4

Gouveia, N., Kephart, J. L., Dronova, I., McClure, L., Granados, J. T., Betancourt, R. M., ... & Diez-Roux, A. V. (2021). Ambient fine particulate matter in Latin American cities: Levels, population exposure, and associated urban factors. Science of the Total Environment, 772, 145035. https://doi.org/10.1186/s43088-022-00305-0

Grabowski, J., & Smoliński, A. (2021). The application of hierarchical clustering to analyzing ashes from the combustion of wood pellets mixed with waste materials. Environmental Pollution, 276, 116766. https://doi.org/10.1016/j.envpol.2021.116766

Hooper, R.P., & Norman, E.P. (1989) Use of multivariate analysis for determining sources of solutes found in wet atmospheric deposition in the United States. Environmental Science & Technology, 23(10), 1263-1268. https://doi.org/10.1021/es00068a013

Huang, W., Tan, J., Kan, H., Zhao, N., Song, W., Chen, G., Jiang, L., Jiang, C., Cheng, R., & Chen, B. (2009). Visibility, air quality and daily mortality in Shanghai, China. Science of the Total Environment, 407(10), 3295-3300. https://doi.org/10.1016/j.scitotenv.2009.02.019

Ignaccolo, R., Ghigo, S., & Giovenali, E. (2008). Analysis of air quality monitoring networks by functional clustering. Environmetrics, 19(7), 672-686. https://doi.org/10.1002/env.946

Iizuka, A., Shirato, S., Mizukoshi, A., Noguchi, M., Yamasaki, A., & Yanagisawa, Y. (2014). A cluster analysis of constant ambient air monitoring data from the Kanto Region of Japan. International Journal of Environmental Research and Public Health, 11(7), 6844-6855. https://doi.org/10.3390/ijerph110706844

Isiyaka, H.A., & Azid, A. (2015). Air quality pattern assessment in Malaysia using multivariate techniques. Malaysian Journal of Analytical Sciences, 19(5), 966-978

Javed, W., & Guo, B. (2021). Chemical characterization and source apportionment of fine and coarse atmospheric particulate matter in Doha, Qatar. Atmospheric Pollution Research, 12(2), 122-136. https://doi.org/10.1016/j.apr.2020.10.015

Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E., & Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 173, 625-641. https://doi.org/0.1007/s10661-010-1411-x

Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38(18), 2895-2907. https://doi.org/10.1016/j.atmosenv.2004.02.026

Keresztes, R., & Rapo, E. (2017). Statistical Analysis of-air pollution with specific regard to factor analysis in the Ciuc basin, Romania. Studia Universitatis Babes-Bolyai. Chemia, 62(3), 283-293. https://doi.org/10.24193/subbchem.2017.3.24

Lu, P., Casagli, N., Catani, F., & Tofani, V. (2012). Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. International Journal of Remote Sensing, 33(2), 466-489. https://doi.org/10.1016/j.isprsjprs.2019.08.004

Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z., ... & Dominick, D. (2013). Spatial and temporal air quality pattern recognition using environmetric techniques: A case study in Malaysia. Environmental Science: Processes & Impacts, 15(9), 1717-1728.

https://doi.org/10.1039/c3em00161j

Nazif, T. M., Chen, S., George, I., Dizon, J. M., Hahn, R. T., Crowley, A., ... & Kodali, S. K. (2019). New-onset left bundle branch block after transcatheter aortic valve replacement is associated with adverse long-term clinical outcomes in intermediate-risk patients: an analysis from the PARTNER II trial. European Heart Journal, 40(27), 2218-2227. https://doi.org/10.1093/eurheartj/ehz227

Nie, W., Liu, X., Liu, C., Guo, L., & Hua, Y. (2022). Prediction of dispersion behavior of typical exhaust pollutants from hydraulic support transporters based on numerical simulation. Environmental Science and Pollution Research, 29(25), 38110-38125. https://doi.org/10.1007/s11356-021-17959-5

Núñez-Alonso, D., Pérez-Arribas, L. V., Manzoor, S., & Cáceres, J. O. (2019). Statistical tools for air pollution assessment: multivariate and spatial analysis studies in the Madrid region. Journal of Analytical Methods in Chemistry, 2019. https://doi.org/10.1155/2019/9753927

Ramson, E., Oluchi, N. E., & John, U. (2016). Multivariate Analysis of Air Quality in Selected Oil Operating Areas in the Niger Delta Region of Nigeria. In SPE Nigeria Annual International Conference and Exhibition, pp. SPE-184363. https://doi.org/ 10.5772/16817

Rani, N. L. A., Azid, A., Khalit, S. I., Juahir, H., & Samsudin, M. S. (2018). Air Pollution Index Trend Analysis in Malaysia, 2010-15. Polish Journal of Environmental Studies, 27(2). https://doi.org/10.15244/pjoes/75964

Stacey, P., Clegg, F., Rhyder, G., & Sammon, C. (2022). Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa. Annals of Work Exposures and Health, 66(6), 781-793. https://doi.org /10.1093/annweh/wxab119

Vakarelska, E., Nedyalkova, M., Nikolova, N., Angelov, C., Tonev, D., Prybilova, P., ... & Simeonov, V. (2021). Tracing the movement of persistent organic pollutants at a high-mountain sampling site by chemometric assessment. Journal of Environmental Science and Health, Part A, 56(9), 1041-1049. https://doi.org/10.1021/es048859u

Wang, P., Tang, J., Wang, S., Dong, X., & Fang, J. (2018). Regional heatwaves in China: a cluster analysis. Climate Dynamics, 50, 1901-1917. https://doi.org/10.1175/JCLI-D-18-0256.1

Wold, S., Kim, E., & Paul, G. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(3), 37-52. https://doi.org/10.1016/0169-7439(87)80084-9

Wu, M., Wu, D., Fan, Q., Wang, B. M., Li, H. W., & Fan, S. J. (2013). Observational studies of the meteorological characteristics associated with poor air quality over the Pearl River Delta in China. Atmospheric Chemistry and Physics, 13(21), 10755-10766. https://doi.org/10.5194/acp-13-10755-2013

Yadav, M., Singh, N. K., Sahu, S. P., & Padhiyar, H. (2022). Investigations on air quality of a critically polluted industrial city using multivariate statistical methods: Way forward for future sustainability. Chemosphere, 291, 133024. https://doi.org/10.1016/j.chemosphere.2021.133024

Zipper, C. E., & Skousen, J. (2021). Coal's legacy in Appalachia: Lands, waters, and people. The Extractive Industries and Society, 8(4), 100990. https://doi.org/10.1016/j.exis.2021.

Published

2023-12-30

How to Cite

Prasad, N., Bhattacharya, T., & Lal, B. (2023). Chemometric Techniques in the Assessment of Ambient Air Quality and Development of Air Quality Index of Coal Mining Complex: A Statistical Approach. International Journal of Experimental Research and Review, 36, 433–446. https://doi.org/10.52756/ijerr.2023.v36.018a

Issue

Section

Articles