Providing Highest Privacy Preservation Scenario for Achieving Privacy in Confidential Data

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v39spl.015

Keywords:

Confidential Data, Data Modification, Machine Learning, Noisy Data, Privacy, Privacy Preservation

Abstract

Machine learning algorithms have been extensively employed in multiple domains, presenting an opportunity to enable privacy. However, their effectiveness is dependent on enormous data volumes and high computational resources, usually available online. It entails personal and private data like mobile telephone numbers, identification numbers, and medical histories. Developing efficient and economical techniques to protect this private data is critical. In this context, the current research suggests a novel way to accomplish this, combining modified differential privacy with a more complicated machine learning (ML) model. It is possible to assess the privacy-specific characteristics of single or multiple-level models using the suggested method, as demonstrated by this work. It then employs the gradient values from the stochastic gradient descent algorithm to determine the scale of Gaussian noise, thereby preserving sensitive information within the data. The experimental results show that by fine-tuning the parameters of the modified differential privacy model based on the varied degrees of private information in the data, our suggested model outperforms existing methods in terms of accuracy, efficiency and privacy.

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy. ACM, In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308-318. https://doi.org/10.1145/2976749.2978318.

Arachchige, P. C. M., Bertok, P., Khalil, I., Liu, D., Camtepe, S., & Atiquzzaman, M. (2019). Local differential privacy for deep learning. IEEE Internet of Things Journal, 7(7), 5827-5842. https://doi.org/10.1109/JIOT.2019.2942801.

Bettini, C., & Riboni, D. (2015). Privacy protection in pervasive systems: State of the art and technical challenges. Pervasive and Mobile Computing, 17, 159-174. https://doi.org/10.1016/j.pmcj.2014.08.004.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., & Seth, K. (2019).

Towards federated learning at scale: System design. In Proceedings of Machine Learning and Systems (MLSys) 2020.

Bu, Z., Wang, H., & Long, Q. (2021). On the convergence of deep learning with differential privacy. arXiv preprint arXiv:2106.07830.

Claerhout, B., & De Moor, G. J. E. (2005). Privacy protection for clinical and genomic data. International Journal of Medical Informatics, 74(2-4), 257-265. https://doi.org/10.1016/j.ijmedinf.2004.06.010.

Cui, L., Qu, Y., Nosouhi, M.R., & Yu, S. J.W.G. (2019). Improving data utility through game theory in personalized differential privacy. Journal of Computer Science and Technology, 34(2), 272-286. https://doi.org/10.1007/s11390-019-1918-1.

Feng, Q., He, D., Zeadally, S., & Khan, M.K.N. (2019). A survey on privacy protection in blockchain system. Journal of Network and Computer Applications, 126, 45-58. https://doi.org/10.1016/j.jnca.2018.10.020.

Gupta, R., Tanwar, S., Al-Turjman, F., & Italiya, P. A. S. W. (2020). Smart contract privacy protection using AI in cyber-physical systems: Tools, techniques and challenges. IEEE Access, 8, 24746-24772. https://doi.org/10.1109/ACCESS.2020.2970576. https://doi.org/10.1109/JSAC.2019.2904348.

Jain, P., & Shakya, H. K. (2023). Achieving privacy preservation in data mining using hybrid transformation and machine learning techniques. MSEA, 71(4), 7883.

Jain, P., Shakya, H. K., & Lala, A. (2023). Advanced privacy-preserving model for smart healthcare using deep learning. In Proceedings of the IEEE International Conference IC3I 2023. https://doi.org/10.1109/IC3I59117.2023.10397954.

Jain, P., Shakya, H. K., Nigam, A., Chandanan, A. K., & Murthy, C. R. (2022). Machine learning-based privacy preservation in data mining. CIMS, 28(12), 350-360.

Jain, P., Thada, V., & Lala, A. (2023). Design of advanced privacy-preserving model for protecting privacy within a fog computing scenario. Proceedings of the IEEE International Conference UPCON 2023. https://doi.org/10.1109/UPCON59197.2023.10434728.

Jain, P., & Shakya, H. K. (2022). A Review of Different Privacy Preserving Techniques in Data Mining. Paper presented at the International Conference on Innovative Computing & Communication (ICICC) 2022. Retrieved from SSRN: https://ssrn.com/abstract=4021149.

Jaiswal, S., & Gupta, P. (2023). GLSTM: A novel approach for prediction of real & synthetic PID diabetes data using GANs and LSTM classification model. Int. J. Exp. Res. Rev., 30, 32-45. https://doi.org/10.52756/ijerr.2023.v30.004

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Yang, H. (2019). Advances and open problems in federated learning. arXiv preprint arXiv, 1912.04977.

Kumar, A., Dutta, S., & Pranav, P. (2023). Supervised learning for Attack Detection in Cloud. Int. J. Exp. Res. Rev., 31(Spl Volume), 74-84. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.008

Malin, B. A. (2004). An evaluation of the current state of genomic data privacy protection technology and a roadmap for the future. Journal of the American Medical Informatics Association, 12(1), 28-34. https://doi.org/10.1197/jamia.M1603.

Miller, A. R., & Tucker, C. (2009). Privacy protection and technology diffusion: The case of electronic medical records. Management Science, 55(7), 1077-1093. https://doi.org/10.1287/mnsc.1090.1014.

Mondal, S., Nag, A., Barman, A., & Karmakar, M. (2023). Machine Learning-based maternal health risk prediction model for IoMT framework. Int. J. Exp. Res. Rev., 32, 145-159. https://doi.org/10.52756/ijerr.2023.v32.012

Owusu, A. K., Qin, Z., Xiong, H., Liu, Y., Zhuang, T., & Qin, Z. (2021). MSDP: Multi-Scheme Privacy-Preserving Deep Learning via Differential Privacy. Personal and Ubiquitous Computing, 26(4), 221-233. https://doi.org/10.1007/s00779-021-01545-0.

Pal, R., Pandey, M., Pal, S., & Yadav, D. (2023). Phishing Detection: A Hybrid Model with Feature Selection and Machine Learning Techniques. Int. J. Exp. Res. Rev., 36, 99-108. https://doi.org/10.52756/ijerr.2023.v36.009

Pei, J., Zhong, K., Jan, M. A., & Li, J. (2022). Personalized federated learning framework for network traffic anomaly detection. Computer Networks, 209. https://doi.org/10.1016/j.comnet.2022.108906.

Samadder, M., Barman, A., & Roy, A. (2023). Examining a generic streaming architecture for smart manufacturing’s Big data processing in Anomaly detection: A review and a proposal. Int. J. Exp. Res. Rev., 30, 219-227. https://doi.org/10.52756/ijerr.2023.v30.019

Shokri, R., & Shmatikov, V. (2015). Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, Colorado, pp. 1310–1321. https://doi.org/10.1145/2810103.2813687.

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R., & Zhou, Y. (2019). A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, London, UK, pp. 1–11. https://doi.org/10.48550/arXiv.1812.03224.

Wang, D., Zhao, J., & Wang, Y. (2020). A survey on privacy protection of blockchain: the technology and application. IEEE Access, 8, 108766–108781. https://doi.org/10.1109/ACCESS.2020.3006452.

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., & Chan, K. (2019). Adaptive Federated Learning in Resource Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Communications, 37(6), 1205-1221.

Wu, H.T., & Tsai, C.W. (2018). Toward b for health-care systems: applying the bilinear pairing technology to ensure privacy. IEEE Consumer Electronics Magazine, 7(4), 65–71. https://doi.org/10.1109/MCE.2018.2831482.

Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., & Ludwig, H. (2019). Hybrid alpha: An efficient approach for privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, London, pp. 13–23. https://doi.org/10.48550/arXiv.1912.05897.

Yadav, R., & Singh, R. (2023). Enhancing Software Maintainability Prediction Using Multiple Linear Regression and Predictor Importance. Int. J. Exp. Res. Rev., 36, 135-146. https://doi.org/10.52756/ijerr.2023.v36.013

Yin, C., Xi, J., Sun, R., & Wang, J. (2018). Location privacy protection based on differential privacy strategy for big data in industrial internet of things. IEEE Transactions on Industrial Informatics,14(8), 3628–3636.https://doi.org/10.1109/TII.2018.2794700

Yuan, J., & Yu, S. (2013). Privacy Preserving Back-Propagation Learning Made Practical with Cloud Computing. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36883-7_18.

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., & Liu, Y. Batchcrypt (2020). Efficient homomorphic encryption for cross-silo federated learning. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC 20), pp. 493–506. https://doi.org 10.5555/3485970.3486018.

Zheng, Z., Xie, S., Dai, H. N., Chen, X., & Wang, H. (2017). An overview of blockchain technology: Architecture, consensus, and future trends. IEEE, In 2017 IEEE International Congress on Big Data (BigData Congress), pp. 557-564. https://doi.org/10.1109/BigDataCongress.2017.85

Zhu, T., Ye, D., Wang, W., Zhou, W., & Yu, P.S. (2020). More than privacy: applying differential privacy in key areas of artificial intelligence. https://arxiv.org/abs/2008.01916.

Published

2024-05-30

How to Cite

Jain, P., Thada, V., & Motwani, D. (2024). Providing Highest Privacy Preservation Scenario for Achieving Privacy in Confidential Data. International Journal of Experimental Research and Review, 39(Spl Volume), 190–199. https://doi.org/10.52756/ijerr.2024.v39spl.015