Smart Farming with Sooty Tern Optimization based LS-HGNet Classification Model

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v37spl.008

Keywords:

Maize tassel, Drones, Deep learning, Stacked hourglass network, Sooty tern optimization

Abstract

Smart farming technologies enable farmers to use resources like water, fertilizer and pesticides as efficiently as possible. This paper discusses how Unmanned Aerial Vehicle (UAV) pictures can be used to automatically detect and count tassels, thereby advancing the advancement of strategic maize planting. The real state of affairs in cornfields is complicated, though, and the current algorithms struggle to provide the speed and accuracy required for real-time detection. This research employed a sizable, excellent dataset of maize tassels to solve this problem. This paper suggests using the bottom-hat-top-hat preprocessing technique to address the lighting irregularities and noise in maize photos taken by drones. The Lightweight weight-stacked hourglass Network (LS-HGNet) model is suggested for classification. The hourglass network structure of LS-HGNet, which is mostly utilised as a backbone network, has allowed significant advancements in the discovery of maize tassels. In light of this, the current work suggests a lighter variant of the hourglass network that also enhances the accuracy of tassel detection in maize plants. The additional skip connections used in the new hourglass network architecture allow minimal changes to the number of network parameters while improving performance. Consequently, the suggested LS-HGNet classifier lowers the computational burden and increases the convolutional receptive field. The hyperparameter tuning process is then carried out using the Sooty Tern Optimisation Algorithm (STOA), which helps increase tassel detection accuracy. Numerous tests were conducted to verify that the suggested approach is more accurate at 98.7% and more efficient than the most advanced techniques currently in use.

References

Aishwarya, N., Praveena, N. G., Priyanka, S., & Pramod, J. (2023). Smart farming for detection and identification of tomato plant diseases using light weight deep neural network. Multimedia Tools and Applications, 82(12), 18799-18810. https://doi.org/10.1007/s11042-022-1312-5

Akkem, Y., Biswas, S. K., & Varanasi, A. (2023). Smart farming using artificial intelligence: A review. Engineering Applications of Artificial Intelligence, 120, 105899. https://doi.org/10.1016/j.engappai.2022.105899

Bhutto, J. A., Tian, L., Du, Q., Sun, Z., Yu, L., & Tahir, M. F. (2022). CT and MRI medical image fusion using noise-removal and contrast enhancement scheme with convolutional neural network. Entropy, 24(3), 393. https://doi.org/10.3390/e24030393

Dawn, N., Ghosh, T., Ghosh, S., Saha, A., Mukherjee, P., Sarkar, S., Guha, S., & sanyal, T. (2023). Implementation of Artificial Intelligence, Machine Learning, and Internet of Things (IoT) in revolutionizing Agriculture: A review on recent trends and challenges. Int. J. Exp. Res. Rev., 30, 190-218. https://doi.org/10.52756/ijerr.2023.v30.018

Dhruva, A. D., Prasad, B., Kamepalli, S., & Kunisetti, S. (2023). An efficient mechanism using IoT and wireless communication for smart farming. Materials Today: Proceedings, 80, 3691-3696. https://doi.org/10.1016/j.matpr.2022.12.688

El-Ghamry, A., Darwish, A., & Hassanien, A. E. (2023). An optimized CNN-based intrusion detection system for reducing risks in smart farming. Internet of Things, 22, 100709. https://doi.org/10.1016/j.iot.2022.100709

El-Ghamry, A., Darwish, A., & Hassanien, A. E. (2023). An optimized CNN-based intrusion detection system for reducing risks in smart farming. Internet of Things, 22, 100709. https://doi.org/10.1016/j.iot.2022.100709

Javeed, A., Dallora, A. L., Berglund, J. S., Ali, A., Ali, L., & Anderberg, P. (2023). Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions. Journal of Medical Systems, 47(17). https://doi.org/10.1007/s10916-022-01753-8

Jia, X., Yin, D., Bai, Y., Yu, X., Song, Y., Cheng, M., ... & Jin, X. (2023). Monitoring Maize Leaf Spot Disease Using Multi-Source UAV Imagery. Drones, 7(11), 650. https://doi.org/10.3390/drones7110650

Jiang, W.; Zhang, K.; Wang, N.; Yu, M. MeshCut data augmentation for deep learning in computer vision. PLOS ONE, 15(1), e0243613. https://doi.org/10.1371/journal.pone.0243613

Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. https://doi.org/10.3390/agriculture13081593

Kumar, T., Turab, M., Raj, K., Mileo, A., Brennan, R., & Bendechache, M. (2023). Advanced Data Augmentation Approaches: A Comprehensive Survey and Future directions. arXiv, 2023, arXiv:2301.02830. https://doi.org/arXiv:2301.02830

Lachgar, M., Hrimech, H., & Kartit, A. (2023). Unmanned aerial vehicle-based applications in smart farming: A systematic review. International Journal of Advanced Computer Science and Applications, 14(6). https://doi.org/10.14569/IJACSA.2023.0140616

Lu, D., Ye, J., Wang, Y., & Yu, Z. (2023). Plant Detection and Counting: Enhancing Precision Agriculture in UAV and General Scenes. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3147529

Meng, K., Wu, Q., Xu, J., Chen, W., Feng, Z., Schober, R., & Swindlehurst, A. L. (2023). UAV-enabled integrated sensing and communication: Opportunities and challenges. IEEE Wireless Communications. https://doi.org/10.1109/MWC.2023.3146074

Pu, H., Chen, X., Yang, Y., Tang, R., Luo, J., Wang, Y., & Mu, J. (2023). Tassel-YOLO: A New High-Precision and Real-Time Method for Maize Tassel Detection and Counting Based on UAV Aerial Images. Drones, 7(8), 492. https://doi.org/10.3390/drones7080492

Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., Alsolai, H., ... & Mellit, A. (2023). A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability, 15(7), 5930. https://doi.org/10.3390/su15075930

Song, C. Y., Zhang, F., Li, J. S., Xie, J. Y., Chen, Y. A. N. G., Hang, Z. H. O. U., & Zhang, J. X. (2023). Detection of maize tassels for UAV remote sensing image with an improved YOLOX model. Journal of Integrative Agriculture, 22(6), 1671-1683. https://doi.org/10.1016/S2095-3119(23)66481-7

Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5686–5696. Long Beach, CA, USA.

Thirumalraj, A., Anusuya, V. S., & Manjunatha, B. (2024). Detection of Ephemeral Sand River Flow Using Hybrid Sandpiper Optimization-Based CNN Model. In A. Kumar, A. Srivastav, A. Dubey, V. Dutt, & N. Vyas (Eds.), Innovations in Machine Learning and IoT for Water Management. pp. 195-214. IGI Global. https://doi.org/10.4018/979-8-3693-1194-3.ch010.

Thorat, T., Patle, B. K., & Kashyap, S. K. (2023). Intelligent insecticide and fertilizer recommendation system based on TPF-CNN for smart farming. Smart Agricultural Technology, 3, 100114. https://doi.org/10.1016/j.smag.2022.100114

Tzutalin, D.L. Git Code. 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 10 April 2023).

Wang, B., Yang, G., Yang, H., Gu, J., Xu, S., Zhao, D., & Xu, B. (2023). Multiscale Maize Tassel Identification Based on Improved RetinaNet Model and UAV Images. Remote Sensing, 15(10), 2530. https://doi.org/10.3390/rs15102530

Yuan, J., Zhou, F., Guo, Z., Li, X., & Yu, H. (2023). HCformer: hybrid CNN-transformer for LDCT image denoising. Journal of Digital Imaging, 36(5), 2290-2305. https://doi.org/10.1007/s10278-022-00657-w

Zeng, F., Ding, Z., Song, Q., Qiu, G., Liu, Y., & Yue, X. (2023). MT-Det: A novel fast object detector of maize tassel from high-resolution imagery using single level feature. Computers and Electronics in Agriculture, 214, 108305. https://doi.org/10.1016/j.compag.2022.108305

Zhang, Q., Xiao, J., Tian, C., Chun‐Wei Lin, J., & Zhang, S. (2023). A robust deformed convolutional neural network (CNN) for image denoising. CAAI Transactions on Intelligence Technology, 8(2), 331-342. https://doi.org/10.1049/caai.2022.0467

Published

2024-03-30

How to Cite

Krishnan, V. G., Vikranth, B., Sumithra, M., Laxmi, B. P., & Gowri, B. S. (2024). Smart Farming with Sooty Tern Optimization based LS-HGNet Classification Model. International Journal of Experimental Research and Review, 37(Special Vo), 96–108. https://doi.org/10.52756/ijerr.2024.v37spl.008