Exploring the Potency of Antiviral Marine Alkaloids Against Japanese encephalitis and Ebola virus: A Computational-Based Assessment for Drug Repurposing Applications

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v37spl.013

Keywords:

Marine antiviral candidate, Molecular docking, Bioinformatics tools, Toxicity and Drug-ability profiles

Abstract

In the twenty-first century, there have been a number of outbreaks, beginning with dengue, swine flu, Nipah, Ebola, chikungunya, and Zika, which were continuously outbreaks in some specific regions. The mosquito-transmitted flavivirus Japanese encephalitis (JE) virus, similar to dengue fever and West Nile viruses, and the negative-single-stranded Ebola virus (EBOV) are the two most emerging and the WHO's most-prioritized diseases. Natural products have always served as an alternative to mainstream drugs in emergencies. Thus, due to their excellent antiviral activity, the present study focused on marine alkaloids and assessed their potency against the JE and EBOV viruses. Using various bioinformatics tools, we selected 60 different antiviral marine alkaloids for anti-JE activity against RNA-dependent RNA polymerase (PDB ID: 4HDG), NS3-helicase (PDB ID: 2Z83), and NS5-protease (PDB ID: 4K6M), as well as anti-EBOV efficacy targeting nucleoprotein (PDB ID: 4Z9P), viral protein 24 (PDB ID: 4M0Q), and viral protein 40 (PDB ID: 3TCQ). Based on previous antiviral records with combined molecular docking scores, physicochemical, toxicity, pharmacokinetic, and drug-ability profiles, the researchers concluded that manzamines A, F, and X with 6-deoxymanzamine X and 8-hydroxymanzamine may be the best among all 60 candidates for JE and EV infection control. In summary, marine alkaloids exhibit excellent antiviral potency and need to be explored as more bioactive marine candidates for mainstream drug discovery, where bioinformatics tools are a more cost-effective, resource-efficient, and time-saving platform than traditional drug discovery modules to locate most lead candidates to be used in mainstream medicine for emerging health conditions.

References

Anbalagan, S., Kanakarajan, Sivakumari, Selvaraj, R., & Kolappapillai, P. (2023). In Silico Molecular Docking Analysis of Flavone and Phytol from Vilvam (Aegle marmelos) against Human Hepatocellular Carcinoma (HepG-2) Mitochondrial Proteins. Int. J. Exp. Res. Rev., 36, 405-414. https://doi.org/10.52756/ijerr.2023.v36.035

Atanasov, A. G., Zotchev, S. B., & Dirsch, V. M., (2021). International Natural Product Sciences Taskforce; Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216. https://doi.org/10.1038/s41573-020-00114-z

Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L. F., Wesolowski, A., & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193-205. https://doi.org/10.1038/s41579-021-00639-z

Bhosale, A., Kokate, A., Jarag, S., Bhise, M., Wagh, V., Chandra, P., Ranjan, R., & Choudante, S. (2023). Targeting COVID-19 through active phytochemicals of betel plant by molecular docking. Int. J. Exp. Res. Rev., 32, 178-187. https://doi.org/10.52756/ijerr.2023.v32.015

Chams, N., Chams, S., Badran, R., Shams, A., Araji, A., Raad, M., Mukhopadhyay, S., Stroberg, E., Duval, E. J., Barton, L. M., & Hajj H. I. (2020). COVID-19: A Multidisciplinary Review. Front Public Health, 8, 383. https://doi.org/10.3389/fpubh.2020.00383

Dassanayake, M. K., Khoo, T. J., Chong, C. H., & Di Martino, P. (2022). Molecular Docking and In-Silico Analysis of Natural Biomolecules against Dengue, Ebola, Zika, SARS-CoV-2 Variants of Concern and Monkeypox Virus. International Journal of Molecular Sciences, 23(19), 11131. https://doi.org/10.3390/ijms231911131

Desai, A. (2020). Twentieth-Century Lessons for a Modern Coronavirus Pandemic. JAMA, 323, 2118-2119. https://doi.org/10.1001/jama.2020.4165

Diptyanusa, A., Herini, E. S., Indarjulianto, S., & Satoto, T. B. T. (2022). Estimation of Japanese encephalitis virus infection prevalence in mosquitoes and bats through nationwide sentinel surveillance in Indonesia. PLoS One, 17(10), e0275647. https://doi.org/10.1371/journal.pone.0275647

Dzobo, K. (2022). The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Comprehensive Pharmacology, pp.408–22. https://doi.org/10.1016/B978-0-12-820472-6.00041-4

Fabbri, E., & Franzellitti, S. (2016). Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. Environmental Toxicology and Chemistry, 35(4), 799-812. https://doi.org/10.1002/etc.3131

Goeijenbier, M., Van Kampen, J. J., Reusken, C. B., Koopmans, M. P., & van Gorp, E. C. (2014). Ebola virus disease: a review on epidemiology, symptoms, treatment and pathogenesis. The Netherlands Journal of Medicine, 72(9), 442-448.

Hasan, S., Ahmad, S. A., Masood, R., & Saeed, S. (2019). Ebola virus: A global public health menace: A narrative review. Journal of Family Medicine and Primary Care, 8(7), 2189-2201. https://doi.org/10.4103/jfmpc.jfmpc_297_19

Jiménez, C. (2018). Marine Natural Products in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 9(10), 959-961. https://doi.org/10.1021/acsmedchemlett.8b00368

Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences USA., 110(21), 8399-404. https://doi.org/10.1073/pnas.1208059110

Kadanali, A., & Karagoz, G. (2015). An overview of Ebola virus disease. Northern Clinics of Istanbul, 2(1), 81-86. https://doi.org/10.14744/nci.2015.97269

Lu, W. Y., Li, H. J., Li, Q. Y., & Wu, Y. C. (2021). Application of marine natural products in drug research. Bioorganic & Medicinal Chemistry, 35, 116058. https://doi.org/10.1016/j.bmc.2021.116058

Mathur, S., & Hoskins, C. (2017). Drug development: Lessons from nature. Biomedical Reports, 6(6), 612-614. https://doi.org/10.3892/br.2017.909

Musarra-Pizzo, M, Pennisi, R., Ben-Amor, I., Mandalari, G., & Sciortino, M.T. (2021). Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses, 13(5), 828. https://doi.org/10.3390/v13050828

Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285

Ngatu, N. R., Kayembe, N. J., Phillips, E. K., Okech-Ojony, J., Patou-Musumari, M., Gaspard-Kibukusa, M., & et al. (2017). Epidemiology of ebolavirus disease (EVD) and occupational EVD in health care workers in Sub-Saharan Africa: Need for strengthened public health preparedness. Journal of Epidemiology, 27(10), 455-461. https://doi.org/10.1016/j.je.2016.09.010

Parvez, M. K., & Parveen, S. (2017). Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology, 60, 1-7. https://doi.org/10.1159/000478729

Piplani, S., Singh, P., Winkler, D.A., & Petrovsky, N. (2022). Potential COVID-19 Therapies from Computational Repurposing of Drugs and Natural Products against the SARS-CoV-2 Helicase. International Journal of Molecular Sciences, 23(14), 7704. https://doi.org/10.3390/ijms23147704

Read, I. W. O., & Musacchio, A. (2022). Influenza pandemics throughout Brazilian history. História, Ciências, Saúde Manguinhos, 29(4), 1013-1031. https://doi.org/10.1590/s0104-59702022000400008

Sahoo, A., Fuloria, S., Swain, S. S., Panda, S. K., Sekar, M., Subramaniyan, V., Panda, M., Jena, A. K., Sathasivam, K. V., & Fuloria, N. K. (2021). Potential of Marine Terpenoids against SARS-CoV-2: An In Silico Drug Development Approach. Biomedicines, 9(11), 1505. https://doi.org/10.3390/biomedicines9111505

Sahoo, A., Swain, S. S., Paital, B., & Panda, M. (2022a). Combinatorial approach of vitamin C derivative and anti-HIV drug-darunavir against SARS-CoV-2. Front Biosci (Landmark Ed), 27(1), 10. https://doi.org/10.31083/j.fbl2701010

Sahoo, A., Swain, S.S., Panda, S.K, Hussain, T., Panda, M., Rodrigues, C.F. (2022b). In Silico Identification of Potential Insect Peptides against Biofilm-Producing Staphylococcus aureus. Chem. Biodivers, 19(10), e202200494. https://doi.org/10.1002/cbdv.202200494

Sampath, S., Khedr, A., Qamar, S., Tekin, A., Singh, R., Green, R., & Kashyap, R. (2021). Pandemics Throughout the History. Cureus, 13(9), e18136. https://doi.org/10.7759/cureus.18136

Schwartz, R. A., & Kapila, R. (2021). Pandemics throughout the centuries. Clinical Dermatology, 39(1), 5-8. https://doi.org/10.1016/j.clindermatol.2020.12.006

Seal, S., Dharmarajan, G., & Khan, I. (2021). Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm. Elife, 10, e68874. https://doi.org/10.7554/eLife.68874

Seyed, H. E., RiahiKashani, N., Nikzad, H., Azadbakht, J., HassaniBafrani, H., & Haddad K. H. (2020). The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology, 551, 1-9. https://doi.org/10.1016/j.virol.2020.08.011

Shaikh, F., Zhao, Y., Alvarez, L., Iliopoulou, M., Lohans, C., Schofield, C. J., Padilla-Parra, S., Siu, S. W. I., Fry, E. E., Ren, J., & Stuart, D. I. (2019). Structure-Based in Silico Screening Identifies a Potent Ebolavirus Inhibitor from a Traditional Chinese Medicine Library. Journal of Medicinal Chemistry, 62(6), 2928-2937. https://doi.org/10.1021/acs.jmedchem.8b01328

Singh, R. K., Dhama, K., Chakraborty, S., Tiwari. R., Natesan, S., Khandia, R., Munjal, A., Vora, K. S., Latheef, S. K., Karthik, K., Singh M. Y., Singh, R., Chaicumpa, W., & Mourya, D. T. (2019). Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Veterinary Quarterly, 39(1), 26-55. https://doi.org/10.1080/01652176.2019.1580827

Steffen, I., Lu, K., Yamamoto, L. K., Hoff, N. A., Mulembakani, P., Wemakoy, E. O., Muyembe-Tamfum, J. J., Ndembi, N., Brennan, C. A., Hackett, J., Stramer, S. L., Switzer, W. M., Saragosti, S., Mbensa, G. O., Laperche, S., Rimoin, A. W., & Simmons, G. (2019). Serologic Prevalence of Ebola Virus in Equatorial Africa. Emerging Infectious Diseases, 25(5), 911-918. https://doi.org/10.3201/eid2505.180115

Suresh, K. P., Nayak, A., Dhanze, H., Bhavya, A. P., Shivamallu, C., Achar, R. R., Silina, E., Stupin, V., Barman, N. N., Kumar, S. K., Syed, A., Kollur, S. P., Shreevatsa, B., & Patil, S. S. (2022). Prevalence of Japanese encephalitis (JE) virus in mosquitoes and animals of the Asian continent: A systematic review and meta-analysis. Journal Infection Public Health, 15(9), 942-949. https://doi.org/10.1016/j.jiph.2022.07.010

Swain, S. S. & Hussain, T. (2022b). Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-Effective Platform for Natural Product-Based Drug Discovery. Chemistry & Biodiversity, 19(11), e202200267. https://doi.org/10.1002/cbdv.202200267

Swain, S. S., Padhy, R. N., & Singh, P. K. (2015). Anticancer compounds from cyanobacterium Lyngbya species: a review. Antonie Van Leeuwenhoek, 108(2), 223-65. https://doi.org/10.1007/s10482-015-0487-2

Swain, S. S., Paidesetty, S. K., & Padhy, R. N. (2017). Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomedicine & Pharmacotherapy, 90, 760-776. https://doi.org/10.1016/j.biopha.2017.04.030

Swain, S. S., Panda, S. K., & Luyten, W. (2021). Phytochemicals against SARS-CoV as potential drug leads. Biomedical Journal, 44(1), 74-85. https://doi.org/10.1016/j.bj.2020.12.002

Swain, S. S., Singh, S. R., Sahoo, A., Panda, P. K., Hussain, T., & Pati, S. (2022a). Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Proteins, 90(9), 1617-1633. https://doi.org/10.1002/prot.26341

Swain, S.S., Hussain, T. (2022b). Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-Effective Platform for Natural Product-Based Drug Discovery. Chem. Biodivers., 19(11), e202200267. https://doi.org/10.1002/cbdv.202200267

Tambo, E., El-Dessouky, A. G., Khater, E. I. M., & Xianonng, Z. (2020). Enhanced surveillance and response approaches for pilgrims and local Saudi populations against emerging Nipah, Zika and Ebola viral diseases outbreaks threats. Journal Infection Public Health, 13(5), 674-678. https://doi.org/10.1016/j.jiph.2020.01.313

Walsh, M. G., Pattanaik, A., Vyas, N., Saxena, D., Webb, C., Sawleshwarkar, S., & Mukhopadhyay, C. (2022). High-risk landscapes of Japanese encephalitis virus outbreaks in India converge on wetlands, rain-fed agriculture, wild Ardeidae, and domestic pigs and chickens. International Journal of Epidemiology, 51(5), 1408-1418. https://doi.org/10.1093/ije/dyac050

WHO (2022). WHO to identify pathogens that could cause future outbreaks and pandemics. https://www.who.int/news/item/21-11-2022-who-to-identify-pathogens-that-could-cause-future-outbreaks-and-pandemics (Assessed on 25th January 2023).

WHO (2023). Information sheet: WHO Global Clinical Platform for Ebola virus disease. https://www.who.int/publications/m/item/information-sheet--who-global-clinical-platform-for-ebola-virus-disease(Assessed on 25th January 2023).

Yakob, L., Hu, W., Frentiu, F. D., Gyawali, N., Hugo, L. E., Johnson, B., Lau, C., Furuya-Kanamori, L., Magalhaes, R. S., & Devine, G. (2023). Japanese Encephalitis Emergence in Australia: The Potential Population at Risk. Clinical Infectious Diseases, 76(2), 335-337. https://doi.org/10.1093/cid/ciac794

Published

2024-03-30

How to Cite

Ali, M. S. (2024). Exploring the Potency of Antiviral Marine Alkaloids Against Japanese encephalitis and Ebola virus: A Computational-Based Assessment for Drug Repurposing Applications. International Journal of Experimental Research and Review, 37(Special Vo), 149–158. https://doi.org/10.52756/ijerr.2024.v37spl.013