Pneumonia Detection through Deep Learning: A Comparative Exploration of Classification and Segmentation Strategies
DOI:
https://doi.org/10.52756/ijerr.2024.v40spl.004Keywords:
CNN, Deep learning medical, DLCNN, GOI, Hybrid Fuzzy Morphology, Medical imaging and pneumonia detection, SegmentationAbstract
The Convolution Neural Network (CNN) algorithm is one of the most widely used methods for identifying and categorizing lung cancer. This paper covers the most suitable architecture and CNN algorithms for lung cancer and pneumonia deduction and classification. The main contributions to the diagnosis and classification of lung cancer with four steps are Nonlinear transfer learning framework (NLTF), Hierarchical Feature Mapping (HFM), Lifelong Partial Dissection (LPD), and Deep Lifelong Convolutional Neural Network (DLCNN). The application of non-local total fuzzy (NLTF) filtering removes various categories of noise after lung CT imageries and enhances cancer areas. The application of Hybrid Fuzzy Morphology (HFM) constructed segmentation to minimize the region of interest (ROI) for cancer using morphology opening and closing processes. Extraction of traits unique to each disease employing Lung Parenchyma Division (LPD) and extraction of deep seismic features using the Geometric Optimal Algorithm (GOA). Training and testing the proposed Deep Learning Convolutional Neural Network (DLCNN) model using the extracted features to classify benign, malignant lung cancers and Recent advancements in deep learning methods have shown accurate results in the investigation and diagnosis of medical image data, including the detection of pneumonia.
References
Asuntha, A., & Srinivasan, A. (2020). Deep learning for lung Cancer detection and classification. Multimedia Tools and Applications, 79(11–12), 7731–7762. https://doi.org/10.1007/s11042-019-08394-3
Avanzo, M., Stancanello, J., Pirrone, G., & Sartor, G. (2020). Radiomics and deep learning in lung cancer. Strahlentherapie Und Onkologie, 196(10), 879–887. https://doi.org/10.1007/s00066-020-01625-9
Bag, S., Golder, R., Sarkar, S., & Maity, S. (2023). SENE: A novel manifold learning approach for distracted driving analysis with spatio-temporal and driver praxeological features. Engineering Applications of Artificial Intelligence, 123, 106332. https://doi.org/10.1016/j.engappai.2023.106332
Bateman, A., Martin, M., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., Da Silva, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Castro, L. G., . . . Teodoro, D. (2020). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
Chao, H., Shan, H., Homayounieh, F., Singh, R., Khera, R. D., Guo, H., Su, T., Wang, G., Kalra, M. K., & Yan, P. (2021). Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography. Nature Communications, 12, 2963. https://doi.org/10.1038/s41467-021-23235-4
Chaunzwa, T. L., Hosny, A., Xu, Y., Shafer, A., Diao, N., Lanuti, M., Christiani, D. C., Mak, R. H., & Aerts, H. J. W. L. (2021). Deep learning classification of lung cancer histology using CT images. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84630-x
Duraivelu, G., Arjunan, P., Ramanathan, K., Subramanian, S., Annamalai, M., & Ramalingam, P. (2024). Effectiveness of Nursing Strategies on Risk for Pneumonia Among Patients Connected to Mechanical Ventilator in Intensive Care Unit. International Journal of Experimental Research and Review, 38, 164-172. https://doi.org/10.52756/ijerr.2024.v38.015
Ghosh, J., Choudhury, S. R., Singh, K., & Koner, S. (2024). Application of Machine Learning Algorithm and Artificial Intelligence in Improving Metabolic Syndrome related complications: A review. International Journal of Advancement in Life Sciences Research, 07(02), 41–67. https://doi.org/10.31632/ijalsr.2024.v07i02.004 https://doi.org/10.4018/IJISMD.316132
Kaur, P. (2023). Performance and Accuracy Enhancement During Skin Disease Detection in Deep Learning. Int. J. Exp. Res. Rev., 35, 96-108. https://doi.org/10.52756/ijerr.2023.v35spl.009
Kesavan, Y., Sahabudeen, S. M., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. International Journal of Experimental Research and Review, 36, 37–46. https://doi.org/10.52756/ijerr.2023.v36.003
Krishnan, V. G., Vikranth, B., Sumithra, M., Laxmi, B. P., & Gowri, B. S. (2024). Smart Farming with Sooty Tern Optimization based LS-HGNet Classification Model. International Journal of Experimental Research and Review, 37(Special Vol), 96-108. https://doi.org/10.52756/ijerr.2024.v37spl.008
Mishra, M., Mishra, V. K., Tekale, S., Nagapraveena, T., Parijatham, K., Dewangan, B., & Hadimani, S. (2022). Machine learning Security Alogrithm and Frame work for IOT System. OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), Raigarh, Chhattisgarh, India, 2023, pp. 1-6
Mishra, V. K., Mishra, M., Dewangan, B. K., & Choudhury, T. (2021). An Efficient Trajectory representative generation moving data prediction using different Clustering algorithm. International Journal of Information System Modeling and Design, 13(7) 1-16.
Mishra, V. K., Mishra, M., Sheetlani, J., Kumar, A., Pachouri, P., Nagapraveena, T., Puttamallaiah, A., Sravya, M. N., & Parijatha, K. (2023). The The Classification and Segmentation of Pneumonia using Deep Learning Algorithms: A Comparative Study. International Journal of Experimental Research and Review, 36, 76–88. https://doi.org/10.52756/ijerr.2023.v36.007
Mishra, V. K., Mishra, M., Tekale, S., Praveena, T.N., Venkatesh, R., & Dewangan, B.K. (2023). ARIMA time Series Model vs. K-Means Clustering for Cloud Workloads Performance," 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), Raigarh, Chhattisgarh, India, 2023, pp. 1-6.
Mishra, V., Mishra, M., Sheetlani, J., Kumar, A., Pachouri, P., Nagapraveena, T., Puttamallaiah, A., Sravya, M., & Parijatha, K. (2023). The Classification and Segmentation of Pneumonia using Deep Learning Algorithms: A Comparative Study. Int. J. Exp. Res. Rev., 36, 76-88. https://doi.org/10.52756/ijerr.2023.v36.007
Paramanik, A. R., Sarkar, S., & Sarkar, B. (2022). OSWMI: An objective-subjective weighted method for minimizing inconsistency in multi-criteria decision making. Computers & Industrial Engineering, 169, 108138. https://doi.org/10.1016/j.cie.2022.108138
Punithavathy, K., Sumathi, P., & Ramya, M. M. (2019). Performance evaluation of machine learning techniques in lung cancer classification from PET/CT images. FME Transactions, 47(3), 418–423. https://doi.org/10.5937/fmet1903418p
Reddy, N. S., & Khanaa, V. (2023). Diagnosing and categorizing of pulmonary diseases using Deep learning conventional Neural network. International Journal of Experimental Research and Review, 31(Spl Volume), 12–22. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.002
Reshi, A., Shafi, S., Qayoom, I., Wani, M., Parveen, S., & Ahmad, A. (2024). Deep Learning-Based Architecture for Down Syndrome Assessment During Early Pregnancy Using Fetal Ultrasound Images. International Journal of Experimental Research and Review, 38, 182-193. https://doi.org/10.52756/ijerr.2024.v38.017
Saha, A., & Yadav, R. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. Int. J. Exp. Res. Rev., 30, 1-14. https://doi.org/10.52756/ijerr.2023.v30.001
Shakeel, P. M., Burhanuddin, M. A., & Desa, M. I. (2020). Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier. Neural Computing & Applications, 34(12), 9579–9592. https://doi.org/10.1007/s00521-020-04842-6
Srivastava, R., & Tripathi, M. (2023). Systematic Exploration Using Intelligent Computing Techniques for Clinical Diagnosis of Gastrointestinal Disorder: A Review. Int. J. Exp. Res. Rev., 36, 265-284. https://doi.org/10.52756/ijerr.2023.v36.026
Upadhyay, S., Jain, J., & Prasad, R. (2024). Early Blight and Late Blight Disease Detection in Potato Using Efficientnetb0. International Journal of Experimental Research and Review, 38, 15-25. https://doi.org/10.52756/ijerr.2024.v38.002
Verma, M., Sheetlani, J., Mishra, V., & Mishra, M. (2022). An integrated technique for security of cellular 5G-IoT network healthcare architecture. In Lecture Notes in Networks and Systems, pp. 549–563. https://doi.org/10.1007/978-981-16-5640-8_42
Yu, K. H., Lee, T. L. M., Yen, M. H., Kou, S. C., Rosen, B., Chiang, J. H., & Kohane, I. S. (2020). Reproducible machine learning methods for lung cancer detection using computed tomography images: algorithm development and validation. JMIR. Journal of Medical Internet Research/Journal of Medical Internet Research, 22(8), e16709. https://doi.org/10.2196/16709
Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional networks. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 2528-2535.