Biodegradable Edible Microbial Cellulose-based Film for Sustainable Packaging from Lab to Land: Physicomechanical Study

Authors

  • Sri Manjusha Varshini Sundararajan Department of Microbiology, Sri Ramakrishna College of Arts and Science for Women, Coimbatore- 641044, Tamil Nadu, India https://orcid.org/0009-0001-5868-9854
  • Mekala Mani Director and Research supervisor, Micro Biotek, Coimbatore- 641028, Tamil Nadu, India

DOI:

https://doi.org/10.52756/ijerr.2024.v39spl.011

Keywords:

Biopolymer composite, biodegradable polymers, microbial cellulose, physico mechanical properties, smart packaging

Abstract

Microbial cellulose has been gaining notable glare and publicity in various sectors, including the biodegradable packaging industry. The study emphasizes the development of microbial cellulose-based composite biodegradable, edible biopolymer to engender food and food product packaging. A characterization study of the mechanical property, barrier property, texture profile analysis, and biodegradability test was conducted for the combination, which appears strong enough to be employed as an application after solutions of film-forming polymers with 10 permutations were completed. Significant mechanical and thermal characteristics can potentially be seen in the composite film with the tensile strength of 56.6±3.13 mpa and TGA of maximum degradation of 92% occurred between temperatures 320°C- 360°C. The mechanical properties of biopolymers are improved by microbial cellulose, which acts as a nucleating agent throughout the gelatin (protein) and polyvinyl alcohol (plasticizer) matrix. The biodegradability test of the biopolymer with results of the highest biodegradability (70%) within five months was observed. These properties may be investigated in the context of the food packaging sector.

References

Abdulkhani, A., Hojati Marvast, E., Ashori, A., Hamzeh, Y., & Karimi, A. N. (2013). Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. International Journal of Biological Macromolecules, 62, 379–386. https://doi.org/10.1016/j.ijbiomac.2013.08.050

Ahmed, S. (2018). Bio-based materials for food packaging: Green and sustainable advanced packaging materials. In Bio-based Materials for Food Packaging: Green and Sustainable Advanced Packaging Materials. Springer Singapore. https://doi.org/10.1007/978-981-13-1909-9

Arifuzzaman Md, Hasan Zahid, Kamruzzaman Pramanik Md, & Rahman Badier SM. (2014). Isolation and characterization of Acetobacter and Gluconobacter spp from sugarcane and rotten fruits. https://www.researchgate.net/publication/279200635

Azeredo, H. M. C., Rosa, M. F., & Mattoso, L. H. C. (2017). Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 97, 664–671. https://doi.org/10.1016/j.indcrop.2016.03.013

Balakrishnan, P., G, G. V, Gopi, S., George Thomas, M., Huskić, M., Kalarikkal, N., Volova, T., Rouxel, D., & Thomas, S. (2019). Thermal, biodegradation and theoretical perspectives on nanoscale confinement in starch/cellulose nanocomposite modified via green crosslinker.

Cazón, P., & Vázquez, M. (2021). Bacterial cellulose as a biodegradable food packaging material: A review. In Food Hydrocolloids, 113. Elsevier B.V. https://doi.org/10.1016/j.foodhyd.2020.106530

Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol, 47(2), 107–124.

Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. In Carbohydrate Polymer Technologies and Applications, 2. Elsevier Ltd. https://doi.org/10.1016/j.carpta.2020.100024

Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., & Liou, N. S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials, 9(8). https://doi.org/10.3390/ma9080644

Cielecka, I., Ryngajłło, M., Maniukiewicz, W., & Bielecki, S. (2021). Highly stretchable bacterial cellulose produced by komagataeibacter hansenii si1. Polymers, 13(24). https://doi.org/10.3390/polym13244455

Ciurzyńska, A., Janowicz, M., Karwacka, M., Nowacka, M., & Galus, S. (2024). Development and Characteristics of Protein Edible Film Derived from Pork Gelatin and Beef Broth. Polymers, 16(7). https://doi.org/10.3390/polym16071009

Ejiogu, I. K., Ibeneme, U., Ishidi, E. Y., Tenebe, O. G., & Ayo, M. D. (2020). Biodegradable hybrid polymer composite reinforced with coconut shell and sweet date seed (Phoenix dactylifera) powder: a physico-mechanical study; part A. Multiscale and Multidisciplinary Modeling, Experiments and Design, 3(1), 41–51. https://doi.org/10.1007/s41939-019-00060-3

Embuscado, M. E., Bemiller, J. N., & Marks, J. S. (1996). Isolation and partial characterization of cellulose produced by Acetobacter xylinum, 10(1).

Freitas, J. A. M., Mendonça, G. M. N., Santos, L. B., Alonso, J. D., Mendes, J. F., Barud, H. S., & Azeredo, H. M. C. (2022). Bacterial Cellulose/Tomato Puree Edible Films as Moisture Barrier Structures in Multicomponent Foods. Foods, 11(15). https://doi.org/10.3390/foods11152336

George, J., & Siddaramaiah. (2012). High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2031–2037. https://doi.org/10.1016/j.carbpol.2011.10.019

Greser, A. B., & Avcioglu, N. H. (2022). Optimization and physicochemical characterization of bacterial cellulose by Komagataeibacter nataicola and Komagataeibacter maltaceti strains isolated from grape, thorn apple and apple vinegars. Archives of Microbiology, 204(8), 1–15. https://doi.org/10.1007/S00203-022-03083-6/METRICS

Indriyati, & Indrarti, L. (2018). Preparation and characterization of bacterial cellulose-beeswax films. IOP Conference Series: Earth and Environmental Science, 160(1). https://doi.org/10.1088/1755-1315/160/1/012010

Khiang Peh, K., & Fun Wong, C. (1999). Polymeric Films as Vehicle for Buccal Delivery: Swelling, Mechanical, and Bioadhesive Properties. J. Pharm. Pharmaceut. Sci., (www.ualberta.ca/~csps), 2(2),

Kumar, A., Kumar Sharma, P., & Ali, A. (2013). HPMC/CMC Based Fast Dissolvable Oral Films of an Anxiolytic: In Vitro Drug Release and Texture Analysis. International Journal of Drug Delivery, 5. http://www.arjournals.org/index.php/ijdd/index

Maes, C., Molder, M. te, Luyten, W., Herremans, G., Winckelmans, N., Peeters, R., Carleer, R., & Buntinx, M. (2021). Determination of the nitrogen gas transmission rate (N2GTR) of ethylene vinyl alcohol copolymer, using a newly developed permeation measurement system. Polymer Testing, 93. https://doi.org/10.1016/j.polymertesting.2020.106979

Marichelvam, M. K., Manimaran, P., Sanjay, M. R., Siengchin, S., Geetha, M., Kandakodeeswaran, K., Boonyasopon, P., & Gorbatyuk, S. (2022). Extraction and development of starch-based bioplastics from Prosopis Juliflora Plant: Eco-friendly and sustainability aspects. Current Research in Green and Sustainable Chemistry, 5. https://doi.org/10.1016/j.crgsc.2022.100296

Ng, H. M., Saidi, N. M., Omar, F. S., Ramesh, K., Ramesh, S., & Bashir, S. (2018). Thermogravimetric Analysis of Polymers. Encyclopedia of Polymer Science and Technology, pp. 1–29. https://doi.org/10.1002/0471440264.pst667

PerkinElmer, & Inc. (n.d.). Characterization of Polymers using TGA. www.perkinelmer.com

Rahman, M. M., Afrin, S., & Haque, P. (2014). Characterization of crystalline cellulose of jute reinforced poly (vinyl alcohol) (PVA) biocomposite film for potential biomedical applications. Progress in Biomaterials, 3(1). https://doi.org/10.1007/s40204-014-0023-x

Rangaswamy, B. E., Vanitha, K. P., & Hungund, B. S. (2015). Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/280784

Ruggero, F., Carretti, E., Gori, R., Lotti, T., & Lubello, C. (2020). Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis. Chemosphere, 246. https://doi.org/10.1016/j.chemosphere.2019.125770

Steinkraus, K. H. (2009). Fermented Foods. Encyclopedia of Microbiology, Third Edition, 45–53. https://doi.org/10.1016/B978-012373944-5.00121-8

Tafuro, G., Costantini, A., Baratto, G., Francescato, S., & Semenzato, A. (2020). Evaluating Natural Alternatives to Synthetic Acrylic Polymers: Rheological and Texture Analyses of Polymeric Water Dispersions. ACS Omega, 5(25), 15280–15289. https://doi.org/10.1021/acsomega.0c01306

Turel, T. (2008). Gas transmission through microporous membranes. https://www.researchgate.net/publication/241556996

Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62–73. https://doi.org/10.1016/j.wasman.2016.04.037

Varshini, S. S. M., Mekala, M., & Ragunathan, R. (2023). Optimization, Characterization, and Cytotoxic Study of Bio-Cellulose by Acetobacter sp Strains to Engender Biodegradable Food Wrapper. Journal of Pure and Applied Microbiology, 17(4), 2367–2385. https://doi.org/10.22207/JPAM.17.4.32

Wu, F., Misra, M., & Mohanty, A. K. (2021). Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. In Progress in Polymer Science, 117. https://doi.org/10.1016/j.progpolymsci.2021.101395

Zeng, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85(3), 506–513. https://doi.org/10.1016/j.carbpol.2011.02.034

Published

2024-05-30

How to Cite

Sundararajan, S. M. V., & Mani, M. (2024). Biodegradable Edible Microbial Cellulose-based Film for Sustainable Packaging from Lab to Land: Physicomechanical Study. International Journal of Experimental Research and Review, 39(Spl Volume), 142–153. https://doi.org/10.52756/ijerr.2024.v39spl.011