Integrated Bioinformatics Analysis and Transcriptomics Analysis Predict Jumonji and AT Rich Interacting Domain2 (JARID2) as a Therapeutic Target in Human Cancers

  • Bhuvanadas Sreeshma Stem Cell Biology and Cancer Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, India https://orcid.org/0000-0002-7645-889X
  • Habeeb Shaik Mohideen Bioinformatics and Entomoinformatics Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, India https://orcid.org/0000-0003-4217-5063
  • Arikketh Devi Stem Cell Biology and Cancer Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, India https://orcid.org/0000-0002-8542-3760
Keywords: Bioinformatics, cancer, JARID2, polycomb repressive complex2, transcriptomics

Abstract

Jumonji and AT Rich Interacting Domain2 (JARID2) protein is recognized as a pivotal gene among the Polycomb Repressive Complex2 (PRC2) components. Nevertheless, the systematic assessment of JARID2 in cancers will enable us to understand its possible role and mechanism. Therefore, in this study, a pan-cancer analysis of JARID2 in cancers using The Cancer Genome Atlas (TCGA) database was performed. We observed an increased expression of JARID2 mRNA and protein in multiple cancer tissues in comparison to the control. In addition, we showed that the high JARID2 expression was closely associated to the poor overall survival and disease-free survival rate of cancer patients. Moreover, upregulated JARID2 has been observed to be involved in triggering the tumor immune response. To supplement the findings, a differential expression profiling was performed using datasets of RNA-Seq of OSCC tissues, which were obtained from NCBI SRA database. In line with the previous findings, JARID2 was observed to be upregulated in OSCC tissues. The expression pattern was validated in various cancer cell lines using qRT-PCR analysis. Altogether, this study comprehensively demonstrates JARID2 as a possible oncogene in human cancer.

References

Adhikari, A., & Davie, J. (2018). JARID2 and the PRC2 complex regulate skeletal muscle differentiation through regulation of canonical Wnt signaling. Epigenetics & Chromatin, 11(1), 46. https://doi.org/10.1186/s13072-018-0217-x

Cao, J., Li, H., Liu, G., Han, S., & Xu, P. (2017). Knockdown of JARID2 inhibits the proliferation and invasion of ovarian cancer through the PI3K/Akt signaling pathway. Molecular Medicine Reports, 16(3), 3600–3605. https://doi.org/10.3892/mmr.2017.7024

Celik, H., Koh, W. K., Kramer, A. C., Ostrander, E. L., Mallaney, C., Fisher, D. A. C., Xiang, J., Wilson, W. C., Martens, A., Kothari, A., Fishberger, G., Tycksen, E., Karpova, D., Duncavage, E. J., Lee, Y., Oh, S. T., & Challen, G. A. (2018). JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Cancer cell, 34(5), 741–756.e8. https://doi.org/10.1016/j.ccell.2018.10.008

Celik, H., Koh, W. K., Ostrander, E. L., Kramer, A. C., Wilson, W. C., Fishberger, G., ... & Challen, G. A. (2017). Jarid2 Restricts Long-Term Repopulating Stem Cell Capacity in Multipotent Progenitors and Acts As Tumor Suppressor in Chronic Myeloid Neoplasms. Blood, 130, 488.

Cha, S., Lee, E., & Won, H. H. (2021). Comprehensive characterization of distinct genetic alterations in metastatic breast cancer across various metastatic sites. NPJ Breast Cancer, 7(1), 93. https://doi.org/10.1038/s41523-021-00303-y

Cline, M. S., Craft, B., Swatloski, T., Goldman, M., Ma, S., Haussler, D., & Zhu, J. (2013). Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser. Scientific Reports, 3, 2652. https://doi.org/10.1038/srep02652

Das, A., Deka, D., Banerjee, A., & Pathak, S. (2024). Evaluating the Anti-proliferative and Apoptotic Role of Atrial Natriuretic Peptide in Colon Cancer Cell Lines. International Journal of Experimental Research and Review, 38, 236-245. https://doi.org/10.52756/ijerr.2024.v38.021

Gan, L., Yang, Y., Li, Q., Feng, Y., Liu, T., & Guo, W. (2018). Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomarker Research, 6, 10. https://doi.org/10.1186/s40364-018-0122-2

Ghosh, J., Roy Choudhury, S., Singh, K., & Koner, S. (2024). Application of Machine Learning Algorithm and Artificial Intelligence in Improving Metabolic Syndrome related complications: A review. International Journal of Advancement in Life Sciences Research, 7(2), 41-67. https://doi.org/10.31632/ijalsr.2024.v07i02.004

Gu, Y., Ding, Z., Zhou, Q., Li, J., & Qian, W. (2023). JARID2 regulates epithelial mesenchymal transition through the PTEN/AKT signalling pathways in ovarian endometriosis. Reproductive Biology, 23(1), 100729. https://doi.org/10.1016/j.repbio.2023.100729

Guan, X., Deng, H., Choi, U. L., Li, Z., Yang, Y., Zeng, J., Liu, Y., Zhang, X., & Li, G. (2020). EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene, 39(48), 7127–7141. https://doi.org/10.1038/s41388-020-01484-9

Halder, K. (2024). Apoptosis and Autophagy: Therapeutic Implications in Cancer. International Journal of Experimental Research and Review, 37(Special Vo), 36-60. https://doi.org/10.52756/ijerr.2024.v37spl.004

Herz, H.M., & Shilatifard, A. (2010). The JARID2-PRC2 duality. Genes & Development, 24(9), 857–861. https://doi.org/10.1101/gad.1921610

https://gco.iarc.fr/

Jung, J., Kim, T. G., Lyons, G. E., Kim, H. R., & Lee, Y. (2005). Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. The Journal of Biological Chemistry, 280(35), 30916–30923. https://doi.org/10.1074/jbc.M414482200

Kesavan, Y., Sahabudeen, S., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. Int. J. Exp. Res. Rev., 36, 37-46. https://doi.org/10.52756/ijerr.2023.v36.003

Kim, T. G., Kraus, J. C., Chen, J., & Lee, Y. (2003). JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. The Journal of Biological Chemistry, 278(43), 42247–42255. https://doi.org/10.1074/jbc.M307386200

Kooistra, S. M., & Helin, K. (2012). Molecular mechanisms and potential functions of histone demethylases. Nature Reviews. Molecular Cell Biology, 13(5), 297–311. https://doi.org/10.1038/nrm3327

Lei, X., Xu, J. F., Chang, R. M., Fang, F., Zuo, C. H., & Yang, L. Y. (2016). JARID2 promotes invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition through PTEN/AKT signaling. Oncotarget, 7(26), 40266–40284. https://doi.org/10.18632/oncotarget.9733

Leiserson, M. D., Vandin, F., Wu, H. T., Dobson, J. R., Eldridge, J. V., Thomas, J. L., Papoutsaki, A., Kim, Y., Niu, B., McLellan, M., Lawrence, M. S., Gonzalez-Perez, A., Tamborero, D., Cheng, Y., Ryslik, G. A., Lopez-Bigas, N., Getz, G., Ding, L., & Raphael, B. J. (2015). Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 47(2), 106–114. https://doi.org/10.1038/ng.3168

Li, G., Margueron, R., Ku, M., Chambon, P., Bernstein, B. E., & Reinberg, D. (2010). Jarid2 and PRC2, partners in regulating gene expression. Genes & Development, 24(4), 368–380. https://doi.org/10.1101/gad.1886410

Li, S. D., Tagami, T., Ho, Y. F., & Yeang, C. H. (2011). Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines. BMC Systems Biology, 5, 186. https://doi.org/10.1186/1752-0509-5-186

Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B., & Liu, X. S. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research, 48(W1), W509–W514. https://doi.org/10.1093/nar/gkaa407

Liu, W., Zeng, Y., Hao, X., Wang, X., Liu, J., Gao, T., Wang, M., Zhang, J., Huo, M., Hu, T., Ma, T., Zhang, D., Teng, X., Yu, H., Zhang, M., Yuan, B., Huang, W., Yang, Y., & Wang, Y. (2023). JARID2 coordinates with the NuRD complex to facilitate breast tumorigenesis through response to adipocyte-derived leptin. Cancer Communications (London, England), 43(10), 1117–1142. https://doi.org/10.1002/cac2.12479

Ma, X., Liu, Y., Liu, Y., Alexandrov, L. B., Edmonson, M. N., Gawad, C., Zhou, X., Li, Y., Rusch, M. C., Easton, J., Huether, R., Gonzalez-Pena, V., Wilkinson, M. R., Hermida, L. C., Davis, S., Sioson, E., Pounds, S., Cao, X., Ries, R. E., Wang, Z., … Zhang, J. (2018). Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature, 555(7696), 371–376. https://doi.org/10.1038/nature25795

Madhu, N.R., Sarkar, B., Biswas, P., Roychoudhury, S., Behera, B.K., & Acharya, C.K. (2023). Therapeutic potential of melatonin in glioblastoma: Current knowledge and future prospects. Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume-2. Elsevier Inc., pp. 371-386. ISBN 978-0-323-95114-2. https://doi.org/10.1016/B978-0-323-95114-2.00002-9

Madhu, N.R., Sarkar, B., Roychoudhury, S., Behera, B.K. (2022). Melatonin Induced in Cancer as a Frame of Zebrafish Model. © Springer Nature Singapore Pte Ltd. 2022, S. Pathak et al. (eds.), Handbook of Animal Models and its Uses in Cancer Research, pp. 1-18. ISBN: 978-981-19-1282-5. https://doi.org/10.1007/978-981-19-1282-5_61-1

Manceau, G., Letouzé, E., Guichard, C., Didelot, A., Cazes, A., Corté, H., Fabre, E., Pallier, K., Imbeaud, S., Le Pimpec-Barthes, F., Zucman-Rossi, J., Laurent-Puig, P., & Blons, H. (2013). Recurrent inactivating mutations of ARID2 in non-small cell lung carcinoma. International Journal of Cancer, 132(9), 2217–2221. https://doi.org/10.1002/ijc.27900

Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. Int. J. Exp. Res. Rev., 32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001

Parreno, V., Martinez, A. M., & Cavalli, G. (2022). Mechanisms of Polycomb group protein function in cancer. Cell Research, 32(3), 231–253. https://doi.org/10.1038/s41422-021-00606-6

Peng, J. C., Valouev, A., Swigut, T., Zhang, J., Zhao, Y., Sidow, A., & Wysocka, J. (2009). Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell, 139(7), 1290–1302. https://doi.org/10.1016/j.cell.2009.12.002

Priestley, P., Baber, J., Lolkema, M. P., Steeghs, N., de Bruijn, E., Shale, C., Duyvesteyn, K., Haidari, S., van Hoeck, A., Onstenk, W., Roepman, P., Voda, M., Bloemendal, H. J., Tjan-Heijnen, V. C. G., van Herpen, C. M. L., Labots, M., Witteveen, P. O., Smit, E. F., Sleijfer, S., Voest, E. E., … Cuppen, E. (2019). Pan-cancer whole-genome analyses of metastatic solid tumours. Nature, 575(7781), 210–216. https://doi.org/10.1038/s41586-019-1689-y

Randall, J. M., Millard, F., & Kurzrock, R. (2014). Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Reviews, 33(4), 1109–1124. https://doi.org/10.1007/s10555-014-9533-1

Ru, B., Wong, C. N., Tong, Y., Zhong, J. Y., Zhong, S. S. W., Wu, W. C., Chu, K. C., Wong, C. Y., Lau, C. Y., Chen, I., Chan, N. W., & Zhang, J. (2019). TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics (Oxford, England), 35(20), 4200–4202. https://doi.org/10.1093/bioinformatics/btz210

Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis, 31(1), 27–36. https://doi.org/10.1093/carcin/bgp220

Solairaja, S., Mohideen, H., & Venkatabalasubramanian, S. (2023). Computational Identification and Validation of Non-Synonymous SNPs in Progesterone Receptor Membrane Complex 1 Linked to Lung Cancer. Int. J. Exp. Res. Rev., 36, 66-75. https://doi.org/10.52756/ijerr.2023.v36.006

Sreeshma, B., & Devi, A. (2023). JARID2 and EZH2, the eminent epigenetic drivers in human cancer. Gene, 879, 147584. https://doi.org/10.1016/j.gene.2023.147584

Su, C., Lin, Z., Cui, Y., Cai, J. C., & Hou, J. (2022). Identification of Essential Tumor-Infiltrating Immune Cells and Relevant Genes in Left-Sided and Right-Sided Colon Cancers. Cancers, 14(19), 4713. https://doi.org/10.3390/cancers14194713

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074

Takeshima, H., & Ushijima, T. (2019). Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precision Oncology, 3, 7. https://doi.org/10.1038/s41698-019-0079-0

Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556–W560. https://doi.org/10.1093/nar/gkz430

Tange, S., Oktyabri, D., Terashima, M., Ishimura, A., & Suzuki, T. (2014). JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PloS One, 9(12), e115684. https://doi.org/10.1371/journal.pone.0115684

Thul, P. J., & Lindskog, C. (2018). The human protein atlas: A spatial map of the human proteome. Protein science : a publication of the Protein Society, 27(1), 233–244. https://doi.org/10.1002/pro.3307

Unberath, P., Mahlmeister, L., Reimer, N., Busch, H., Boerries, M., & Christoph, J. (2022). Searching of Clinical Trials Made Easier in cBioPortal Using Patients' Genetic and Clinical Profiles. Applied Clinical Informatics, 13(2), 363–369. https://doi.org/10.1055/s-0042-1743560

UniProt Consortium (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100

Yang, D., Khan, S., Sun, Y., Hess, K., Shmulevich, I., Sood, A. K., & Zhang, W. (2011). Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA, 306(14), 1557–1565. https://doi.org/10.1001/jama.2011.1456

You, J. S., & Jones, P. A. (2012). Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell, 22(1), 9–20. https://doi.org/10.1016/j.ccr.2012.06.008

Zhang, H., Du, Y., Xin, P., & Man, X. (2022). The LINC00852/miR-29a-3p/JARID2 axis regulates the proliferation and invasion of prostate cancer cell. BMC Cancer, 22(1), 1269. https://doi.org/10.1186/s12885-022-10263-6

Zhang, X., Li, J., Yang, Q., Wang, Y., Li, X., Liu, Y., & Shan, B. (2020). Tumor mutation burden and JARID2 gene alteration are associated with short disease-free survival in locally advanced triple-negative breast cancer. Annals of Translational Medicine, 8(17), 1052. https://doi.org/10.21037/atm-20-3773

Zhu, X. X., Yan, Y. W., Ai, C. Z., Jiang, S., Xu, S. S., Niu, M., Wang, X. Z., Zhong, G. S., Lu, X. F., Xue, Y., Tian, S., Li, G., Tang, S., & Jiang, Y. Z. (2017). Jarid2 is essential for the maintenance of tumor initiating cells in bladder cancer. Oncotarget, 8(15), 24483–24490. https://doi.org/10.18632/oncotarget.15522

Published
2024-05-30
How to Cite
Sreeshma, B., Mohideen, H., & Devi, A. (2024). Integrated Bioinformatics Analysis and Transcriptomics Analysis Predict Jumonji and AT Rich Interacting Domain2 (JARID2) as a Therapeutic Target in Human Cancers. International Journal of Experimental Research and Review, 39(Spl Volume), 15-38. https://doi.org/10.52756/ijerr.2024.v39spl.002