Stability of Envelope Proteins of SARS-CoV-2 Variants Could Be a Choice of New Drug Target
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has emerged as one of the worst viral pandemics during the past few years. As reported by the World Health Organization, around 77,56 49 520 cases and 70 51 720 deaths were reported from all over the world, which includes approximately 3500 patients reported during the recent past only. Currently, circulating variants of SARS-CoV-2 are KP.3, JN.1, BA.2.86 and KP.2. Mass vaccinations have been provided since the end of December 2020, which led to 5.47 billion people vaccinated till date. However, the disease continues in small foci all over the world. Development of an effective drug target and mutation independent vaccine thus becomes essential research priorities. Owing to the unavailability of a specific drug molecule, the present study has focused on the development of an effective drug target to treat COVID-19. In-house primers were designed for four essential structural genes viz., Spike protein, ORF1ab, Nucleocapsid gene, and Envelope gene. Samples of different waves were amplified using these primers employing the Polymerase Chain Reaction (PCR) assay. A total number of 86 SARS-CoV-2 RT PCR positive samples were studied, and results showed the most frequent appearance (80.2%) of Envelope (E) protein in all the samples. This suggests that during transmission across numbers of human hosts, it is the Envelope protein that was the most stable one. The most severe Delta variant showed the presence of E proteins in all the samples assayed. Blocking E protein as a new drug target to intervene intracellular replication of virus could be an effective drug development strategy.
References
Brian, D.A., & Baric, R.S. (2005). Coronavirus genome structure and replication. Curr. Topics Microbiol Immunol., 287, 1–30. https://doi.org/10.1007/3-540-26765-4_1
Chernyshev, A. (2020). Pharmaceutical Targeting the Envelope Protein of SARS-CoV-2: The Screening for Inhibitors in Approved Drugs. ChemRxiv. Cambridge: Cambridge Open Engage. https://doi.org/10.26434/chemrxiv.12286421.v1
Clarke, D. K., Duarte, E. A., Moya, A., Elena, S. F., Domingo, E., & Holland, J. (1993). Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses. Journal of Virology, 67(1), 222–228.
https://doi.org/10.1128/JVI.67.1.222-228.1993
Das, G., Das, T., Chowdhury, N., Chatterjee, D., Bagchi, A., & Ghosh, Z. (2021). Repurposed drugs and nutraceuticals targeting envelope protein: A possible therapeutic strategy against COVID-19. Genomics, 113(1), 1129–1140. https://doi.org/10.1016/j.ygeno.2020.11.009
Enard, D., & Petrov, D. A. (2020). Ancient RNA virus epidemics through the lens of recent adaptation in human genomes. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 375(1812), 20190575. https://doi.org/10.1098/rstb.2019.0575
Farhud, D. D., & Mojahed, N. (2022). SARS-COV-2 Notable Mutations and Variants: A Review Article. Iranian Journal of Public Health, 51(7), 1494–1501. https://doi.org/10.18502/ijph.v51i7.10083
Farhud, D. D., Bahadori, M., & Zarif-Yeganeh, M. (2021). Evidence of the Ancestries of COVID-19 Virus in East Asia, More than 20,000 Years Ago. Iranian Journal of Public Health, 50(9) i–v. https://doi.org/10.18502/ijph.v50i9.7086
Ghafari, M., du Plessis, L., Raghwani, J., Bhatt, S., Xu, B., Pybus, O. G., & Katzourakis, A. (2022). Purifying Selection Determines the Short-Term Time Dependency of Evolutionary Rates in SARS-CoV-2 and pH1N1 Influenza. Molecular Biology and Evolution, 39(2), msac009. https://doi.org/10.1093/molbev/msac009
Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., COVID-19 Genomics UK (COG-UK) Consortium, Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19(7), 409–424.
https://doi.org/10.1038/s41579-021-00573-0
Li F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, N.Y.), 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450–454. https://doi.org/10.1038/nature02145
Lu R., Zhao X., Li J., Niu P., Yang B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W.J., Wang, D., Xu, W., Holmes, E.C., Gao, G.F., Wu, G., Chen, W., Shi, W., & Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395, 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8.
Mandala, V. S., McKay, M. J., Shcherbakov, A. A., Dregni, A. J., Kolocouris, A., & Hong, M. (2020). Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nature Structural & Molecular Biology, 27(12), 1202–1208. https://doi.org/10.1038/s41594-020-00536-8
Markov, P. V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N. I., & Katzourakis, A. (2023). The evolution of SARS-CoV-2. Nature Reviews. Microbiology, 21(6), 361–379. https://doi.org/10.1038/s41579-023-00878-2
Meredith, L. W., Hamilton, W. L., Warne, B., Houldcroft, C. J., Hosmillo, M., Jahun, A. S., Curran, M. D., Parmar, S., Caller, L. G., Caddy, S. L., Khokhar, F. A., Yakovleva, A., Hall, G., Feltwell, T., Forrest, S., Sridhar, S., Weekes, M. P., Baker, S., Brown, N., Moore, E., … & Goodfellow, I. (2020). Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study. The Lancet. Infectious Diseases, 20(11), 1263–1272. https://doi.org/10.1016/S1473-3099(20)30562-4
Park, S. H., Siddiqi, H., Castro, D. V., De Angelis, A. A., Oom, A. L., Stoneham, C. A., Lewinski, M. K., Clark, A. E., Croker, B. A., Carlin, A. F., Guatelli, J., & Opella, S. J. (2021). Interactions of SARS-CoV-2 envelope protein with amilorides correlate with antiviral activity. PLoS pathogens, 17(5), e1009519. https://doi.org/10.1371/journal.ppat.1009519
Pybus, O. G., & Rambaut, A. (2009). Evolutionary analysis of the dynamics of viral infectious disease. Nature reviews Genetics, 10(8), 540–550. https://doi.org/10.1038/nrg2583
Rahman, S., Montero, M. T. V., Rowe, K., Kirton, R., & Kunik, F., Jr (2021). Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Review of Clinical Pharmacology, 14(5), 601–621. https://doi.org/10.1080/17512433.2021.1902303.
Santos-Mendoza, T. (2023). The Envelope (E) Protein of SARS-CoV-2 as a Pharmacological Target. Viruses, 15(4), 1000. https://doi.org/10.3390/v15041000
Shahbaz, S., Bozorgmehr, N., Lu, J., Osman, M., Sligl, W., Tyrrell, D. L., & Elahi, S. (2023). Analysis of SARS-CoV-2 isolates, namely the Wuhan strain, Delta variant, and Omicron variant, identifies differential immune profiles. Microbiology Spectrum, 11(5), e0125623. Advance online publication. https://doi.org/10.1128/spectrum.01256-23.
Volz, E., Hill, V., McCrone, J. T., Price, A., Jorgensen, D., O'Toole, Á., Southgate, J., Johnson, R., Jackson, B., Nascimento, F. F., Rey, S. M., Nicholls, S. M., Colquhoun, R. M., da Silva Filipe, A., Shepherd, J., Pascall, D. J., Shah, R., Jesudason, N., Li, K., Jarrett, R., … & Connor, T. R. (2021). Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 184(1), 64–75.e11.
https://doi.org/10.1016/j.cell.2020.11.020
Wang, M. Y., Zhao, R., Gao, L. J., Gao, X. F., Wang, D. P., & Cao, J. M. (2020). SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Frontiers in cellular and infection Microbiology, 10, 587269. https://doi.org/10.3389/fcimb.2020.587269
Xia, X., Zhang, Y., Li, S., Lin, H., & Yan, Z. (2021). Structure-based screening of drug candidates targeting the SARS-CoV-2 envelope protein. bioRxiv, 2021. https://doi.org/10.1101/2021.08.25.457645
Yan, W., Zheng, Y., Zeng, X., He, B., & Cheng, W. (2022). Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy, 7(1), 26. https://doi.org/10.1038/s41392-022-00884-5.
Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Si, H.R., Zhu, Y., Li, B., Chen J., Luo Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, S.X., Zhao, K., Chen, J., Deng, F., Yan, B., Wang, Y.Y., Xiao, G.F., & Shi, Z.S. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273. https://doi.org/10.1038/s41586-020-2012-7.
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.