Multiband Elliptical Patch Octagon Antenna With And Without Proximity Coupling

Keywords: Milli-meter wave, , Fifth generation (5G), Department of Telecommunications (DoT), High-Frequency Structure Simulator (HFSS), Flame Retardant (FR4)

Abstract

This paper presents a novel multiple-band elliptical patch octagonal antenna with and without proximity coupling. The frequency bandwidth and the requirement for high data throughput are always on the rise with today’swireless communication systems and therefore, multiband antennas are highly essential. A new elliptical patch octagon arrangement is proposed for use in this case as the efficiencies gained in using this form of an antenna are that it is capable of operating on multiple bands. Multi-band Elliptical Patch Octagon Antenna with and without Proximity Coupling of dimensions 15×25×1.6 mm3 is designed. A single-layer antenna operates at multiple frequencies from 10GHz to 300GHz, whereas a multi-layer antenna operates at 10GHz to 500GHz. For a sample at 28GHz, a Single-layer elliptical patch octagon antenna without proximity coupling antenna earned return loss (s11), gain and radiation efficiency of -21.38dB, 5.03dB and 90%, respectively. In order to enhance the bandwidth and gain of an antenna, a two-layer elliptical patch antenna with proximity coupling is designed whose return loss, gain and radiation efficiency are -24.5dB, 8.81dB and 88.69% at 29GHz frequency, respectively. The substrate employed for these two antennas is FR4, with a dielectric constant of 4.4 and a loss tangent (tanδ) of 0.002. Overall, this study provides a greater understanding of how proximity coupling influences the operation of multiband antennas, thereby paving the way to enhance the design and practical utilization of multiband antennas in today's wireless communication systems.

References

Agarwal, M., Dhanoa, J. K., & Khandelwal, M. K. (2021). Two-port hexagon shaped MIMO microstrip antenna for UWB applications integrated with double stop bands for WiMax and WLAN. AEU-International Journal of Electronics and Communications, 138, 153885. https://doi.org/10.1016/j.aeue.2021.153885.

Andhe, K. K., & Reddy, S. N. (2022). CPW-Fed F-Shaped Compact Monopole Antenna with the Dual-Slot on the Ground Plane for WLAN and WiMAX Applications. Journal of Optoelectronics Laser, 41(11), 82-89.

Andhe, K. K., & Reddy, S. N. (2021). Dual-Band Circularly Polarized Compact Planar Dual Slot Monopole Antenna. IEEE, In 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), pp. 201-205. https://doi.org/10.1109/RTEICT52294.2021.9573821.

Balanis, C. A. (2016). Antenna theory: analysis and design. John wiley & sons.

Bharathi, A., & Reddy, G. R. S. (2023). A novel dual-sense polarization reconfigurable dual-band microstrip antenna. AEU-International Journal of Electronics and Communications, 171, 154926. https://doi.org/10.1016/j.aeue.2023.154926.

Deshmukh, A. A., Surendran, S., Rane, A., Bhasin, Y., & Chavali, V. A. (2024). Compact designs of circular microstrip antennas employing modified ground plane for wideband response. AEU-International Journal of Electronics and Communications, 176, 155130. https://doi.org/10.1016/j.aeue.2024.155130.

Dhillon, A. S., Mittal, D., & Sidhu, E. (2017). THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik, 144, 634-641. https://doi.org/10.1016/j.ijleo.2017.07.018.

Eric, N. A., Samuel, E., Jacques, M., Serge, D. Y., Corrao, N., & Vuong, T. P. (2023). Design and Characterization of a Traveling-Wave Antenna for Millimeter Applications in the Sub-THz Band. International Journal of Antennas and Propagation, 2023. https://doi.org/10.1155/2023/5201018

Goshu, L. A., Gemeda, T. M., & Fante, A. K. (2022). Planar Microstrip Patch Antenna Arrays with Semi-elliptical Slotted Patch and ground Structure for 5G Broadband Communication Systems. Cogent Engineering, 9(1), 2069069. https://doi.org/10.1080/23311916.2022.2069069

Jeyakumar, P., Anandpushparaj, J., Thanapal, P., Meenatchi, S., & Dhamodaran, M. (2023). Terahertz micro-strip patch antenna design and modelling for 6G mobile communication. Journal of Electrical Engineering & Technology, 18(3), 2253-2262. https://doi.org/10.1007/s42835-022-01308-8

Jianqiang Bao, Na Li, Pengchao Zhao & Yuyu Shan. (2023). Design and analysis of microstrip transceiver array antennas with the function to suppress beam deflection for 77 GHz automotive radar. AEU-International Journal of Electronics and Communications, 162, 154587. https://doi.org/10.1016/j.aeue.2023.154587.

Jin, L., & Zhang, R. (2024). A dual-band wideband high-gain slot loaded microstrip patch antenna. AEU-International Journal of Electronics and Communications, 155193. https://doi.org/10.1016/j.aeue.2024.155193.

Kalyan, R., Reddy, K., & Priya, K. P. (2019). Compact CSRR etched UWB microstrip antenna with quadruple band refusal characteristics for short distance wireless communication applications. Progress in Electromagnetics Research Letters, 82, 139-146. https://doi.org/10.2528/PIERL19010601.

Kishore, N., & Senapati, A. (2022). 5G smart antenna for IoT application: A review. International Journal of Communication Systems, 35(13), e5241. https://doi.org/10.1002/dac.5241

Konch, R., Goswami, S., Sarmah, K., & Sarma, K. K. (2023). Microstrip dual band hybrid directional resonator antenna with volume reduction. AEU-International Journal of Electronics and Communications, 171, 154889. https://doi.org/10.1016/j.aeue.2023.154889.

Kumar, R., Garg, A., Shah, H., & Kaur, B. (2023). Survey on performance parameters of planar microwave antennas. Int. J. Exp. Res. Rev., 31(Spl Volume), 186-194. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.017

Kushwaha, R. K., & Karuppanan, P. (2021). Investigation and design of microstrip patch antenna employed on PCs substrates in THz regime. Australian Journal of Electrical and Electronics Engineering, 18(2), 118-125. https://doi.org/10.1080/1448837X.2021.1936779

Ma, R., Huang, H., Li, X., & Wang, X. (2023). Triple-Band MIMO Antenna with Integrated Decoupling Technology. International Journal of Antennas and Propagation, 2023. doi.org/10.1155/2023/6691346

Mahmud, R. H. (2020). Terahertz microstrip patch antennas for the surveillance applications. Kurdistan Journal of Applied Research, 5(1), 16-27. https://doi.org/10.24017/science.2020.1.2

Maity, S., Tewary, T., Mukherjee, S., Roy, A., Sarkar, P. P., & Bhunia, S. (2022). Super wideband high gain hybrid microstrip patch antenna. AEU-international Journal of Electronics and Communications, 153, 154264. https://doi.org/10.1016/j.aeue.2022. 154264.

Malhotra, I., Jha, K. R., & Singh, G. (2018). Terahertz antenna technology for imaging applications: A technical review. International Journal of Microwave and Wireless Technologies, 10(3), 271-290. https://doi.org/10.1017/S175907871800003X

Merin Joshiba, J., & Judson, D. (2023). An eye bolt shape slotted microstrip patch antenna design utilizing a substrate-integrated waveguide for 5G systems. Automatika, 64(4), 943-955. https://doi.org/10.1080/00051144.2023.2228065

Preethichandra, D. M. G., Piyathilaka, L., Izhar, U., Samarasinghe, R., & De Silva, L. C. (2023). wireless body area networks and their applications—a review. IEEE Access, 11, 9202-9220. https://doi.org/10.1109/ACCESS.2023.3239008

Raghav Kapur. (n.d.). 5G NR Frequency Bands in FR2. https://www.everythingrf.com/ community/5g-nr-new-radio-frequency-bands.

Rajanna, V. K. S., Venkatesh, T., Rajanna, P. K. T., & Shambulinga, M. A. (2024). Triband Slot Antenna Loaded with Asymmetric Split Ring Resonator for Wireless Applications. https://doi.org/10.2528/PIERL23110101

Rana, M. S., Avi, A. M., Hossain, S., Rana, S. B., Habib, A. A., & Rahman, M. M. (2022). Design and Performance Analysis of Rectangular Microstrip Patch Antenna for Wireless Applications. IEEE, In 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C), pp. 208-211. https://doi.org/10.1109/ I4C57141.2022.10057907

Rana, M. S., Rana, S. B., & Rahman, M. M. (2023). Microstrip patch antennas for various applications: a review. Indonesian Journal of Electrical Engineering and Computer Science, 29(3), 1511-1519. https://doi.org/10.11591/ijeecs.v29.i3.pp1511-1519

Rakhee, Rajesh Bhadada, and Usha (2023). High Purity Orbital Angular Momentum Modes Reconfiguration Using Uniform Circular Array Antenna to Enhance Channel Capacity and Spectral Efficiency. Int. J. Exp. Res. Rev., 36, 285-310. https://doi.org/10.52756/ijerr.2023. v36.027

Sharan, B., Sagar, A., & Rajak, N. (2024). Microstrip Planar Antennas for C-Band Wireless Applications. International Journal of Experimental Research and Review, 38, 147-153. https://doi.org/10.52756/ijerr.2024.v38.013

Shaw, M., & Choukiker, Y. K. (2023). Reconfigurable polarization and pattern microstrip antenna for IRNSS band applications. AEU-International Journal of Electronics and Communications, 160, 154501. https://doi.org/10.1016/j.aeue.2022.154501

Singh, M., & Singh, S. (2021). Design and performance investigation of miniaturized multi‐wideband patch antenna for multiple terahertz applications. Photonics and Nanostructures-Fundamentals and Applications, 44, 100900. https://doi.org/10.1016/j.photonics.2021.100900

Telecom Regulatory Authority of India. (n.d.). TRAI 5G Recommendations. https://www.trai.gov.in/sites/default/files/ Recommendations_11042022. pdf.

Ullah, Y., Roslee, M. B., Mitani, S. M., Khan, S. A., & Jusoh, M. H. (2023). A survey on handover and mobility management in 5G HetNets: current state, challenges, and future directions. Sensors, 23(11), 5081.https://doi.org/10.3390/s23115081

Vanitha, V., Florence, S. E., Alaguraj, A., & Janaki Gollamudi, L. (2023). Design of Wideband Two-Sided Bandpass Frequency Selective Surface for X, Ka, and Ku Band Application. International Journal of Antennas and Propagation, 2023. https://doi.org/10.1155/2023/7491755

Wang, X., Xue, Z., Liang, Q., Xiong, W., & Zhang, Z. (2023). Liquid Crystal Polymer-Based Flexible Trap Ultra-Wideband Antenna Design. International Journal of Antennas and Propagation, 2023. https://doi.org/10.1155/2023/8872629

Yiğit, H., & Karayahşi, K. (2023). A novel model-based technique to improve design processes for microstrip antennas. AEU-International Journal of Electronics and Communications, 162, 154570. https://doi.org/10.1016/j.aeue.2023.154570.

Yıldırım, B. S., & Gırık Acıkaya, F. (2021). A dual-band microstrip patch antenna for 2.45/5-GHz WLAN applications. https://doi.org/10.1016/j.aeue.2021.153957.

Zhu, J., Chen, M., Li, Z., & Liu, J. (2023). A Compact Planar Ultra-Wideband Array Antenna. International Journal of Antennas and Propagation, 2023. https://doi.org/10.1155/2023/1339236

Published
2024-05-30
How to Cite
Manjunath, K., & Reddy, S. (2024). Multiband Elliptical Patch Octagon Antenna With And Without Proximity Coupling. International Journal of Experimental Research and Review, 39(Spl Volume), 129-141. https://doi.org/10.52756/ijerr.2024.v39spl.010