A FTIR Evident-Based Exploration of the Antioxidant Activity of Five Threatened Cactus Species

  • Sheerin Bashar School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India https://orcid.org/0000-0001-7530-9828
  • Naga Jogayya Kothakota Department of Forensic Sciences, Centurion University of Technology and Management, Vizianagaram, Andhra Pradesh, India https://orcid.org/0000-0002-7536-4680
  • Satheesh Ampolu Department of Chemistry, Centurion University of Technology and Management, Vizianagaram, Andhra Pradesh, India https://orcid.org/0000-0001-9191-3179
  • Nisruti Anuja School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India https://orcid.org/0009-0002-6839-4117
  • Venkata Kalyan Kanakala School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Vizianagaram, Andhra Pradesh, India https://orcid.org/0009-0002-3079-5708
  • J Chandrasekhar Rao Department of Physics, Government Degree College, Rajam, Andhra Pradesh, India
Keywords: Antimicrobial activity, Antioxidant activity, Cactus, Fourier-transform infrared spectroscopy (FTIR), Phytochemicals, Threatened species

Abstract

Cacti, members of the botanical family Cactaceae, comprise approximately 127 genera and approximately 1,850 known species within the Caryophyllales order. Presently, various anthropogenic activities are causing the endangerment of several cactus species. Among the reasons cited for this threat, the aesthetic and medicinal values of cacti have garnered notable attention. This study aims to explore the medicinal potential, particularly in terms of antimicrobial, antioxidant, and phytochemical properties, of five threatened cactus species listed by the International Union for Conservation of Nature (IUCN) and the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES): Micranthocereus estevesii, Euphorbia lactea, Haageocereus crestata, Ferocactus acanthodes and Mammillaria huitzilopochtli. A Fourier-transform infrared (FTIR) analysis was conducted to substantiate and corroborate the findings. Notably, no prior studies have investigated the medicinal properties of these five species, underscoring the novelty of our research. Initially, specimens of the five cacti were collected from the Regional Plant Resource Center, Bhubaneswar, air-dried, and milled into powder. Phytoconstituents were then extracted individually using polar (water) and non-polar (methanol) solvents. The antimicrobial properties were assessed using agar well diffusion assays against Candida albicans, Escherichia coli and Staphylococcus aureus. Results indicated that methanol extracts of Micranthocereus estevesii and Euphorbia lactea inhibited Candida albicans, while aqueous extracts of Micranthocereus estevesii and Ferocactus acanthodes inhibited Escherichia coli and Staphylococcus aureus. Methanol extracts exhibited superior antioxidant activity compared to aqueous extracts. FTIR spectroscopy revealed distinctive peak values representing various functional groups in the extract components, including alcohols, carboxylic acids, phenols, aldehydes, alkanes, alkenes, ketones, aromatics, aliphatic amines, primary amines, ethers, alkyl halides, and esters. Both aqueous and methanolic extracts demonstrated promising antibacterial efficacy among the five cactus species studied, suggesting their potential application in pharmaceuticals and medication development. However, habitat degradation and illegal commerce pose significant threats to these species, emphasizing the urgent need for conservation efforts.

References

Acharya, C.K., Khan, N.S., & Madhu, N.R. (2022). Traditional Phyto-therapeutic uses by Tribal People in Western Sundarbans: Henry Island, Fredric Island and Bakkhali, West Bengal, India. Jour. Pl. Sci. Res., 38(2), 513–523. https://doi.org/10.32381/JPSR.2022.38.02.8

Akullo, J. O., Kiage, B., Nakimbugwe, D., & Kinyuru, J. (2022). Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon, 8(9), e10457. https://doi.org/10.1016/j.heliyon.2022.e10457

Behera, A., Das, R., Mahanta, S., Akhtar, J., & Mohanty, G. (2024). Antioxidant Potential of Bioactive Peptides Derived from Fish Waste: A Focus on Catla catla Liver and Intestinal Tissue. Int. J. Exp. Res. Rev., 39(Spl Volume), 39-50. https://doi.org/10.52756/ijerr.2024.v39spl.003

Benzie, F. F., & Strain, J.J. (1999). [2]Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15-27. https://doi.org/10.1016/s0076-6879(99)99005-5

Betts, J., Young, R. P., Hilton-Taylor, C., Hoffmann, M., Rodríguez, J. P., Stuart, S. N., & Milner-Gulland, E. J. (2020). A framework for evaluating the impact of the IUCN Red List of threatened species. Conservation Biology : the Journal of the Society for Conservation Biology, 34(3), 632–643. https://doi.org/10.1111/cobi.13454

Bhatta, K., Samal, H., & Mohanty, P. (2023). Isozyme profiling of Antioxidant Enzyme in Macrotyloma uniflorum. Int. J. Exp. Res. Rev., 36, 156-165. https://doi.org/10.52756/ijerr.2023.v36.015a

Buotte, P. C., Law, B. E., Ripple, W. J., & Berner, L. T. (2020). Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecological applications : a publication of the Ecological Society of America, 30(2), e02039. https://doi.org/10.1002/eap.2039

De, M., Sharma, L., & Acharya, C. (2023). A Comprehensive Chemical Characterization of Leaves of Five Potential Medicinal Plants in Paschim Medinipur District, W. B., India. Int. J. Exp. Res. Rev., 36, 20-36. https://doi.org/10.52756/ijerr.2023.v36.002

Ghosh, A., Das, B. K., Roy, A., Mandal, B., & Chandra, G. (2008). Antibacterial activity of some medicinal plant extracts. Journal of Natural Medicines, 62, 259-262. https://doi.org/10.1007/s11418-007-0216-x

Ghosh, R., Basak, P., Ghosh, A., & Choudhury, B. (2023). Effect of Cadmium Toxicity on Different Antioxidant Enzymes in Growing Wheat (Triticum aestivum L.) Seedlings. Int. J. Exp. Res. Rev., 36, 198-208. https://doi.org/10.52756/ijerr.2023.v36.020

Gonfa, T., Teketle, S., & Kiros, T. (2020). Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of Cadaba rotundifolia Forssk leaf extracts. Cogent Food & Agriculture, 6(1), 1853867. https://doi.org/10.1080/23311932.2020.1853867

Guerrero, P. C., Majure, L. C., Romero, A. C., & Hernández, T. H. (2019) Phylogenetic Relationships and Evolutionary Trends in the Cactus Family. Journal of Heredity, 110(1), 4–21. https://doi.org/10.1093/jhered/esy064

Hijam, A., Koijam, A., & Haobam, R. (2024). Methanol extract of Isodon ternifolius (D. Don) KUDO leaves has antimicrobial and antioxidant activities but no neuroprotective activity. International Journal of Experimental Research and Review, 39(Spl Volume), 200-212. https://doi.org/10.52756/ijerr.2024.v39spl.016

Hijam, A., Koijam, A., & Haobam, R. (2024). Methanol extract of Isodon ternifolius (D. Don) KUDO leaves has antimicrobial and antioxidant activities but no neuroprotective activity. International Journal of Experimental Research and Review, 39(Spl Volume), 200-212. https://doi.org/10.52756/ijerr.2024.v39spl.016

Hore, P., & Bhaben, T. (2023). Toxic Effect of 2,4-D on Cytology of Vigna radiata (L.) Wilczek. Int. J. Exp. Res. Rev., 30, 276-81. https://doi.org/10.52756/ijerr.2023.v30.025.

Hultine, K. R., Hernandez, T. H., Williams, D. G., Albeke, S. E., Tran, N., Puente, R. & Larios, E. (2023). Global change impacts on cacti (Cactacea): current threats, challenges and conservation solution. Annals of Botany, 132(4), 671-683. https://doi.org/10.1093/aob/mcad040

Jakkana, V., & Yamala, S. (2024). Isolation, Identification and in-Silico Characterization of Bioactive Peptide from the Venom Sac of Conus inscriptus. International Journal of Experimental Research and Review, 38, 1-14. https://doi.org/10.52756/ijerr.2024.v38.001

Khan, A. S. (2017). Medicinally important trees. Springer.

Khan, D., Harris, A.J., Zaman, Q. U., Wang, H. X., Wen, J., Landis, J. B. & Wang, H. F. (2024). The evolutionary history and distribution of cactus germplasm resources, as well as potential domestication under a changing climate. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13042

Kosloff, L. H., & Trexler, M. C. (1987). The convention on international trade in endangered species: No carrot, but where's the stick. Envtl. L. Rep. News & Analysis, 17, 10222. https://doi.org/10.26481/dis.20230612fs

Koul, B., Bhat, N., Abubakar, M., Mishra, M., Arukha, A. P., & Yadav, D. (2022). Application of natural coagulants in water treatment: A sustainable alternative to chemicals. Water, 14(22), 3751. https://doi.org/10.3390/w14223751

Lüttge, U. (2010). Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. AoB Plants, 2010, plq005. https://doi.org/10.1093/aobpla/plq005

Mohanta, T. K., Mohanta, Y. K., Kaushik, P., & Kumar, J. (2024). Physiology, genomics, and evolutionary aspects of desert plants. Journal of Advanced Research, 58, 63-78. https://doi.org/10.1016/j.jare2023.04.019

Nath, P. C., Sharma, R., Debnath, S., Nayak, P. K., Roy, R., Sharma, M., ... & Sridhar, K. (2024). Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. International Journal of Biological Macromolecules, 259(1), 129129.

Novoa, A., Le Roux, J. J., Robertson, M. P., Wilson, J. R., & Richardson, D. M. (2014). Introduced and invasive cactus species: a global review. AoB Plants, 7, plu078. https://doi.org/10.1093/aobpla/plu078

Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. Int. J. Exp. Res. Rev., 30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024

Rana, A. C., & Gulliya, B. (2019). Chemistry and pharmacology of flavonoids-A review. Indian Journal of Pharmaceutical Education & Research, 53(1). https://doi.org/10.5530/ijper.53.1.3

Roy, R., & Ray, S. (2022). Upgradation of an Agro-residue by Acid Pretreatment into a Solid Fuel with Improved Energy Recovery Potential: An Optimization Study. Arabian Journal for Science and Engineering, 47(5), 6311-6323. https://doi.org/10.1007/s13369-021-06253-8

Roy, R., & Ray, S. (2023). Effect of various pretreatments on energy recovery from waste biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 9616-9628. https://doi.org/10.1080/15567036.2019.1680767

Roy, R., Debnath, D., & Ray, S. (2022). Comprehensive assessment of various lignocellulosic biomasses for energy recovery in a hybrid energy system. Arabian Journal for Science and Engineering, 47(5), 5935-5948. https://doi.org/10.1007/s13369-021-05723-3

Roy, R., Shil, S., Choudhary, D. K., Mondal, P., Adhikary, P., Manna, U., ... & Maji, M. (2022). Conversion of glucose into calcium gluconate and determining the process feasibility for further scaling-up: An optimization approach. Int. J. Exp. Res. Rev, 27, 1-10. https://doi.org/10.52756/ijerr.2022.v27.001

Samarth, R. M., Samarth, M., & Matsumoto, Y. (2017). Medicinally important aromatic plants with radioprotective activity. Future science OA, 3(4), FSO247. https://doi.org/10.4155/fsoa-2017-0061

Sarkar, B., Bhattacharya, P., Yen Chen, C., Maity, J., & Biswas, T. (2022). A comprehensive characterization and therapeutic properties in ripened Noni fruits (Morinda citrifolia L.). Int. J. Exp. Res. Rev., 29, 10-32. https://doi.org/10.52756/ijerr.2022.v29.002

Sarkar, B., Kotal, H.N., Giri, C.K., Mandal, A., Hudait, N., Madhu, N.R., Saha, S., Basak, S.K., Sengupta, J., & Ray, K. (2024). Detection of a bibenzyl core scaffold in 28 common mangrove and associate species of the Indian Sundarbans: potential signature molecule for mangrove salinity stress acclimation. Front. Plant Sci., 14, 1291805. https://doi.org/10.3389/fpls.2023.1291805

Sarkar, S., Sadhu, S., Roy, R., Tarafdar, S., Mukherjee, N., Sil, M., Goswami, A., & Madhu, N.R. (2023). Contemporary Drifts in Diabetes Management. Int. J. App. Pharm., 15(2), 1-9. https://doi.org/10.22159/ijap.2023v15i2.46792

Sen, S., Chakraborty, R., & De, B. (2011). Challenges and opportunities in the advancement of herbal medicine: India’s position and role in a global context. Journal of Herbal Medicine, 1(3-4), 67-75. https://doi.org/10.1016/j.hermed.2011.11.001

Sharma, M., & Kaushik, P. (2021). Vegetable phytochemicals: An update on extraction and analysis techniques. Biocatalysis and Agricultural Biotechnology, 36, 102149. https://doi.org/10.1016/j.bcab.2021.102149

Sofowora, A. (1993). Medicinal plants and traditional medicine in Africa. 2nd ed. Sunshine house, Ibadan, Nigeria: Spectrum books Ltd., Screening plants for bioactive agents, pp. 134-156.

Ureta, C., & Martorell, C. (2009). Identifying the impacts of chronic anthropogenic disturbance on two threatened cacti to provide guidelines for population-dynamics restoration. Biological Conservation, 142(10), 1992-2001. https://doi.org/10.1016/j.biocon.2008.12.031

Verma, M., S., Kotwal, S., & Kumar, A. (2024). Exploring the Influence of Arbuscular Mycorrhizal Symbology on the Antioxidant Potential of Liverwort Asterella multiflora: A Comprehensive Study on Rhizoid and Thallus Anatomy. Int. J. Exp. Res. Rev., 37(Special Vol.), 109-119. https://doi.org/10.52756/ijerr.2024.v37spl.009

Vinceti, B., Eyzaguirre, P., & Johns, T. (2012). The nutritional role of forest plant foods for rural communities. In Human Health and Forests. Routledge, pp. 63-96.

Walia, A., Kumar, N., Singh, R., Kumar, H., Kumar, V., Kaushik, R., & Kumar, A. P. (2022). Bioactive compounds in Ficus fruits, their bioactivities and associated health benefits: a review. Journal of Food Quality, 2022, 1-19. https://doi.org/10.1155/2022/6597092

Wjunow, C., Moselewski, K.L., Huhnen, Z., Sultanova, S., & Sabantina, L. (2023). Sustainable Textiles from Unconventional Biomaterials—Cactus Based. Engineering Proceedings, 37(1), 58. https://doi.org/10.3390/ECP2023-14652

Yahia, E. M., & Mondragon-Jacobo, C. (2011). Nutritional components and anti-oxidant capacity of ten cultivars and lines of cactus pear fruit (Opuntia spp.). Food Research International, 44(7), 2311-2318. https://doi.org/10.1016/j.foodres.2011.02.042

Published
2024-06-30
How to Cite
Bashar, S., Kothakota, N., Ampolu, S., Anuja, N., Kanakala, V., & Rao, J. (2024). A FTIR Evident-Based Exploration of the Antioxidant Activity of Five Threatened Cactus Species. International Journal of Experimental Research and Review, 40(Spl Volume), 11-23. https://doi.org/10.52756/ijerr.2024.v40spl.002