Digital Watermarking Using Hybrid Grasshopper Optimization Algorithm and Genetic Algorithm (HGOAGA)

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v42.024

Keywords:

Digital watermarking, discrete wavelet transformation, genetic algorithm, hybrid grasshopper optimization algorithm, multiple scaling factors and singular value decomposition

Abstract

The advancement of computer technology has raised significant issues with digital content piracy and copyright law. A popular method of protecting copyright and related uses is digital watermarking. Various algorithms have been developed to address the need for invisible performance and robustness in digital watermarking schemes. Here, we proposed a novel evolutionary algorithm, the hybrid Grass Hopper Optimization algorithm, and the Genetic algorithm (HGOAGA) for optimizing multiple scaling factors in the digital watermarking scheme in the frequency domain of hybrid Discrete Wavelet Transformation (DWT) and Singular Value Decomposition (SVD) method (hybrid DWT-SVD). The subcomponents of the image are determined by calculating the DWT of the cover image. The problem is determining the best scaling factor for watermarking after converting the subcomponent to the frequency domain using SVD. In HGOAGA, an optimal solution of multiple scaling factors is found after several iterations, starting with a set of randomly generated solutions. The advantages of GOA and GA are combined in the HGOAGA to balance exploration and exploitation functionalities. Furthermore, HGOAGA can converge quickly and escape local optima well. Some standard images were used in the MATLAB environment to test the proposed algorithm. The evaluation of the experiment was carried out using various metrics such as the Structural Similarity Index (SSIM), the Normalized Cross-Correlation (NCC), and the Peak Signal-to-Noise Ratio (PSNR). The experimental results of the tests showed a PSNR value of 51db for the proposed method compared to existing methods, and they are best suited to solving conflict problems between robustness and quality.

References

Anand, A., & Singh, A. K. (2020). An improved DWT-SVD domain watermarking for medical information security. Computer Communications, 152, 72-80. https://doi.org/10.1016/j.comcom.2020.01.038

Ansari, I. A., Pant, M., & Ahn, C. W. (2016). ABC optimized secured image watermarking scheme to find out the rightful ownership. Optik, 127(14), 5711–5721. https://doi.org/10.1016/j.ijleo.2016.03.070

Alshoura, W. H., Zainol, Z., Teh, J. S., Alawida, M., & Alabdulatif, A. (2021b). Hybrid SVD-Based Image Watermarking Schemes: A Review. IEEE Access, 9, 32931–32968. https://doi.org/10.1109/access.2021.3060861

Alzahrani, A. (2022). Enhanced Invisibility and Robustness of Digital Image Watermarking Based on DWT-SVD. Applied Bionics and Biomechanics, pp.1–13. https://doi.org/10.1155/2022/5271600.

Alzyadat, T., Yamin, M., & Chetty, G. (2019). Genetic algorithms for the travelling salesman problem: a crossover comparison. International Journal of Information Technology, 12(1), 209–213. https://doi.org/10.1007/s41870-019-00377-9

Amiri, A., & Mirzakuchaki, S. (2020b). A digital watermarking method based on NSCT transform and hybrid evolutionary algorithms with neural networks. SN Applied Sciences, 2(10). https://doi.org/10.1007/s42452-020-03452-0

Ariatmanto, D., & Ernawan, F. (2020). An improved robust image watermarking by using different embedding strengths. Multimedia Tools and Applications, 79(17–18), 12041–12067. https://doi.org/10.1007/s11042-019-08338-x

Assini, I., Badri, A., Safi, K., Sahel, A., & Baghdad, A. (2018). A Robust Hybrid Watermarking Technique for Securing Medical Image. International Journal of Intelligent Engineering and Systems, 11(3), 169–176. https://doi.org/10.22266/ijies2018.0630.18

Baluja, S. (2020b). Hiding Images within Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7), 1685–1697. https://doi.org/10.1109/tpami.2019.2901877

Begum, M., & Uddin, M. S. (2020). Digital Image Watermarking Techniques: A Review. Information, 11(2), 110. https://doi.org/10.3390/info11020110.

Begum, M., Shorif, S. B., Uddin, M. S., Ferdush, J., Jan, T., Barros, A., & Whaiduzzaman, M. (2024). Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition for Enhanced Imperceptibility and Robustness. Algorithms, 17(1), 32. https://doi.org/10.3390/a17010032

Cedillo-Hernandez, M., Cedillo-Hernandez, A., & Garcia-Ugalde, F. J. (2021). Improving DFT-Based Image Watermarking Using Particle Swarm Optimization Algorithm. Mathematics, 9(15), 1795. https://doi.org/10.3390/math9151795

Cox, I.J., Miller, M.L., Bloom, J.A, Fridrich, J., & Kalker, T. (2007) Digital Watermarking and Steganography, Second Edition. Digital Watermarking and Steganography, Second Edition.

Cui, X., Niu, Y., Zheng, X., & Han, Y. (2018). An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image. PLoS ONE, 13(5), e0196306. https://doi.org/10.1371/journal.pone.0196306

Devi, K. J., Singh, P., Dash, J. K., Thakkar, H. K., Santamaría, J., Krishna, M. V. J., & Romero-Manchado, A. (2022). A New Robust and Secure 3-Level Digital Image Watermarking Method Based on G-BAT Hybrid Optimization. Mathematics, 10(16), 3015. https://doi.org/10.3390/math10163015

Devi, K. J., Singh, P., Thakkar, H. K., & Kumar, N. (2022). Robust and secured watermarking using Ja-Fi optimization for digital image transmission in social media. Applied Soft Computing, 131, 109781. https://doi.org/10.1016/j.asoc.2022.109781.

Divyanshu Awasthi, Anurag Tiwari, Priyank Khare, Vinay Kumar Srivastava,(2024). A comprehensive review on optimization-based image watermarking techniques for copyright protection, Expert Systems with Applications,Volume 242, 122830, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2023.122830.

El-Shorbagy, M. A., & El-Refaey, A. M. (2020). Hybridization of Grasshopper Optimization Algorithm With Genetic Algorithm for Solving System of Non-Linear Equations. IEEE Access, 8, 220944–220961. https://doi.org/10.1109/access.2020.3043029

Evsutin, O., Melman, A., & Meshcheryakov, R. (2020b). Digital Steganography and Watermarking for Digital Images: A Review of Current Research Directions. IEEE Access, 8, 166589–166611. https://doi.org/10.1109/access.2020.3022779

Gharsalli, L. (2022). Hybrid Genetic Algorithms. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.104735

Giri, K. J., & Bashir, R. (2017). A block based watermarking approach for color images using discrete wavelet transformation. International Journal of Information Technology, 10(2), 139–146. https://doi.org/10.1007/s41870-017-0075-y

Hassan, O. M. S., Abdulazeez, A. M., Mohammed, A. I., Salih, S. O., Alih, S. H., Ahmed, F. Y. H., & Zeebaree, D. Q. (2021). An Efficient Robust Color Watermarking Algorithm Based on DWT, DCT, BFO and Implementation. https://doi.org/10.1109/icset53708.2021.9612547

lshoura, W. H., Zainol, Z., Teh, J. S., Alawida, M., & Alabdulatif, A. (2021). Hybrid SVD-Based Image Watermarking Schemes: A Review. IEEE Access, 9, 32931–32968. https://doi.org/10.1109/access.2021.3060861

Liu, K., Zhang, H., Zhang, B., & Liu, Q. (2021). Hybrid optimization algorithm based on neural networks and its application in wavefront shaping. Optics Express, 29(10), 15517. https://doi.org/10.1364/oe.424002

Maloo, S., Kumar, M., & Lakshmi, N. (2020). A Modified Whale Optimization Algorithm Based Digital Image Watermarking Approach. Sensing and Imaging, 21(1). https://doi.org/10.1007/s11220-020-00291-6

Migallón, H., Belazi, A., Sánchez-Romero, J. L., Rico, H., & Jimeno-Morenilla, A. (2020). Settings-Free Hybrid Metaheuristic General Optimization Methods. Mathematics, 8(7), 1092. https://doi.org/10.3390/math8071092

Mishra, A., Agarwal, C., Sharma, A., & Bedi, P. (2014). Optimized gray-scale image watermarking using DWT–SVD and Firefly Algorithm. Expert Systems With Applications, 41(17), 7858–7867. https://doi.org/10.1016/j.eswa.2014.06.011

Mishra, A., Agarwal, C., & Chetty, G. (2018). Optimization of Scaling Factors for Image Watermarking Using Harmony Search Algorithm. In Lecture notes in computer science (pp. 422–434). https://doi.org/10.1007/978-3-319-95171-3_33

Melman, A., & Evsutin, O. (2023). Image data hiding schemes based on metaheuristic optimization: a review. Artificial Intelligence Review, 56(12), 15375–15447. https://doi.org/10.1007/s10462-023-10537-w

Mohanarathinam, A., Kamalraj, S., Venkatesan, G. K. D. P., Ravi, R. V., & Manikandababu, C. S. (2019). Digital watermarking techniques for image security: a review. Journal of Ambient Intelligence and Humanized Computing, 11(8), 3221–3229. https://doi.org/10.1007/s12652-019-01500-1

Poonam, N., & Arora, S. M. (2018). A DWT-SVD based Robust Digital Watermarking for Digital Images. Procedia Computer Science, 132, 1441–1448. https://doi.org/10.1016/j.procs.2018.05.076

Pradhan, C. (2019). Robust and blind watermarking using Arnold 4D cat map in discrete wavelet. International Journal of Information Technology, 12(2), 593–597. https://doi.org/10.1007/s41870-019-00341-7

Sharma, S., Sharma, H., Sharma, J. B., & Poonia, R. C. (2021). A secure and robust color image watermarking using nature-inspired intelligence. Neural Computing and Applications, 35(7), 4919–4937. https://doi.org/10.1007/s00521-020-05634-8

Sharma, S., Chauhan, U., Khanam, R., & Singh, K. K. (2021). Digital Watermarking using Grasshopper Optimization Algorithm. Open Computer Science, 11(1), 330–336. https://doi.org/10.1515/comp-2019-0023

Sharma, S., Chauhan, U., Khanam, R., & Singh, K. K. (2020). Digital Watermarking using Dragonfly Optimization Algorithm. Journal of Information Technology Management, 12(Special Issue: Deep Learning for Visual Information Analytics and Management.), 36-47. doi: 10.22059/jitm.2020.78888

Singh, R., Saraswat, M., Ashok, A., Mittal, H., Tripathi, A., Pandey, A. C., & Pal, R. (2023). From classical to soft computing based watermarking techniques: A comprehensive review. Future Generation Computer Systems, 141, 738–754. https://doi.org/10.1016/j.future.2022.12.015

Singh, O. P., Singh, A. K., Srivastava, G., & Kumar, N. (2020). Image watermarking using soft computing techniques: A comprehensive survey. Multimedia Tools and Applications, 80(20), 30367–30398. https://doi.org/10.1007/s11042-020-09606-x

Tang, M., & Zhou, F. (2022). A robust and secure watermarking algorithm based on DWT and SVD in the fractional order fourier transform domain. Array, 15, 100230. https://doi.org/10.1016/j.array.2022.100230

Wang, B., & Zhao, P. (2020). An Adaptive Image Watermarking Method Combining SVD and Wang-Landau Sampling in DWT Domain. Mathematics, 8(5), 691. https://doi.org/10.3390/math8050691

Wang, J., Liu, Z., & Wang, X. (2022). A Hybrid Algorithm Based Static Model Updating Method and Its Application to Spacecraft. Advances in Materials Science and Engineering, 2022, 1–12. https://doi.org/10.1155/2022/7448549

Yasmeen, F., & Uddin, M. S. (2021). An Efficient Watermarking Approach Based on LL and HH Edges of DWT–SVD. SN Computer Science, 2(2). https://doi.org/10.1007/s42979-021-00478-y

Ying, Q., Lin, J., Qian, Z., Xu, H., & Zhang, X. (2019). Robust digital watermarking for color images in combined DFT and DT-CWT domains. Mathematical Biosciences & Engineering, 16(5), 4788–4801. https://doi.org/10.3934/mbe.2019241

Yuan, Z., Su, Q., Liu, D., & Zhang, X. (2020). A blind image watermarking scheme combining spatial domain and frequency domain. The Visual Computer, 37(7), 1867–1881. https://doi.org/10.1007/s00371-020-01945-y

Zear, A., Singh, A. K., & Kumar, P. (2016). A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine. Multimedia Tools and Applications, 77(4), 4863–4882. https://doi.org/10.1007/s11042-016-3862-8

Zhu, T., Qu, W., & Cao, W. (2021). An optimized image watermarking algorithm based on SVD and IWT. The Journal of Supercomputing, 78(1), 222–237. https://doi.org/10.1007/s11227-021-03886-2

Published

2024-08-30

How to Cite

Cheemalapati, V., Khan, D. A., & PVSSR, C. (2024). Digital Watermarking Using Hybrid Grasshopper Optimization Algorithm and Genetic Algorithm (HGOAGA). International Journal of Experimental Research and Review, 42, 278–291. https://doi.org/10.52756/ijerr.2024.v42.024

Issue

Section

Articles