Process Parameter Effects on Powder Mixed EDM Machining Characteristics Using Biocompatible Ti-6Al-4V Alloy
DOI:
https://doi.org/10.52756/ijerr.2024.v41spl.001Keywords:
Powder mixed EDM, Ti-6Al-4V, Bio-compatibility, Process parameters, Machining characteristics, RSMAbstract
This study examines how various process parameters affect the machining properties of a bio-compatible Ti-6Al-4V alloy using PMEDM with silicon carbide (SiC) powder. The parameters investigated include peak current, pulse on/off time, powder concentration, and voltage gap. The study analyzed their effects on material removal rate (MRR), tool wear rate (TWR), surface roughness (SR), and surface morphology. A central composite design was used in the tests to make empirical models that use response surface methods to link the process parameters to the machining results. It is found that the Pulse current and Ton influence the material removal rate and the surface roughness significantly. The powder concentration also impacts PMEDM's machining performance. The Scanning electron microscopic images reveal the effect of powder seen in the machined components. The crater, micro cracks and machining marks can be seen in the SEM images. The surface integrity is correlated with the output parameters of surface roughness. The developed mathematical models effectively predict and optimize the machining properties of Ti-6Al-4V alloy using PMEDM with SiC powder. This research offers valuable insights for applying PMEDM in the fabrication of biomedical implants and devices made from Ti-6Al-4V alloy.
References
Al-Khazraji, A., Amin, S. A., & Ali, S. M. (2016). The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel. Engineering Science and Technology, an International Journal, 19(3), 1400–1415. https://doi.org/10.1016/j.jestch.2016.01.014
Bhattacharya, A., Batish, A., & Kumar, N. (2013). Surface characterization and material migration during surface modification of die steels with silicon, graphite and tungsten powder in EDM process. Journal of Mechanical Science and Technology, 27(1), 133–140. https://doi.org/10.1007/s12206-012-0883-8
Das, R., Banerjee, S., & Madhu, U. (2016). Effect of deformation and sensitization on corrosion behavior of 304 LN and 316 LN Austenitic stainless steel. Int. J. Exp. Res. Rev., 4, 1-8.
Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability—a review. Journal of Materials Processing Technology, 68(3), 262–274. https://doi.org/10.1016/s0924-0136(96)00030-1
Garg, R. K., Singh, K. K., Sachdeva, A., Sharma, V. S., Ojha, K., & Singh, S. (2010). Review of research work in sinking EDM and WEDM on metal matrix composite materials. The International Journal of Advanced Manufacturing Technology, 50(5-8), 611–624. https://doi.org/10.1007/s00170-010-2534-5
Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004
Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300. https://doi.org/10.1016/S0890-6955(03)00162-7
Jahan, M. P., Rahman, M., & Wong, Y. S. (2011). A review on the conventional and micro-electrodischarge machining of tungsten carbide. International Journal of Machine Tools and Manufacture, 51(12), 837–858. https://doi.org/10.1016/j.ijmachtools.2011.08.016
Jahan, M.P., Rahman, M., Wong, Y.S., & Fuhua, L. (2010). On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(5), 795-814. https://doi.org/10.1243/09544054jem1718
Jain, S., & Mulewa, A. (2024). Experimental Analysis of Surface Roughness Optimization of EN19 Alloy Steel Milling by the Cuckoo Search Algorithm. International Journal of Experimental Research and Review, 38, 102-110. https://doi.org/10.52756/ijerr.2024.v38.009
Jeswani, M. L. (1981). Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining. Wear, 70(2), 133–139. https://doi.org/10.1016/0043-1648(81)90148-4
Kansal, H. K., Singh, S., & Kumar, P. (2005). Parametric optimization of powder mixed electrical discharge machining by response surface methodology. Journal of Materials Processing Technology, 169(3), 427–436.
https://doi.org/10.1016/j.jmatprotec.2005.03.028
Kansal, H. K., Singh, S., & Kumar, P. (2006). Performance parameters optimization (multi-characteristics) of powder mixed electric discharge machining (PMEDM) through Taguchi’s method and utility concept. Indian Journal of Engineering and Materials Sciences, 13(3), 209–216.
Kansal, H. K., Singh, S., & Kumar, P. (2007a). Effect of Silicon Powder Mixed EDM on Machining Rate of AISI D2 Die Steel. Journal of Manufacturing Processes, 9(1), 13–22. https://doi.org/10.1016/s1526-6125(07)70104-4
Kansal, H. K., Singh, S., & Kumar, P. (2007b). Technology and research developments in powder mixed electric discharge machining (PMEDM). Journal of Materials Processing Technology, 184(1), 32–41. https://doi.org/10.1016/j.jmatprotec.2006.10.046
Khanra, A. K., Pathak, L. C., & Godkhindi, M. M. (2009). Application of new tool material for electrical discharge machining (EDM). Bulletin of Materials Science, 32(4), 401–405. https://doi.org/10.1007/s12034-009-0058-0
Kumar, P.M., Sivakumar, K., Selvaraja, L. (2024). EDM machining effectiveness for Ti–6Al–4V alloy using Cu–TiB2 ceramic composite electrode: a parametric evaluation. Ceramics International, 50(11B), 2024, 20118-20132. https://doi.org/10.1016/j.ceramint.2024.03.135
Kumar, V., Hussain, M., Singh, R., & Kumar, S. (2020). Comparison of Process Parameters on Mild Steel and SS304 Through Statistical Analysis of Optimization Technique. Advanced Science, Engineering and Medicine, 12(7), 888–893. https://doi.org/10.1166/asem.2020.2646
Kuriachen, B., & Mathew, J. (2015). Effect of Powder Mixed Dielectric on Material Removal and Surface Modification in Microelectric Discharge Machining of Ti-6Al-4V. Materials and Manufacturing Processes, 31(4), 439–446. https://doi.org/10.1080/10426914.2015.1004705
Lee, H. T., & Tai, T. Y. (2003). Relationship between EDM parameters and surface crack formation. Journal of Materials Processing Technology, 142(3), 676–683. https://doi.org/10.1016/s0924-0136(03)00688-5
Nauryz, N., Omarov, S., Kenessova, A., Pham, T.T., Talamona, D., & Perveen, A. (2023). Powder-Mixed Micro-Electro-Discharge Machining-Induced Surface Modification of Titanium Alloy for Antibacterial Properties. J. Manuf. Mater. Process, 7, 214. https://doi.org/10.3390/jmmp7060214
Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30–42. https://doi.org/10.1016/j.jmbbm.2007.07.001
Peças, P., & Henriques, E. (2003). Influence of silicon powder-mixed dielectric on conventional electrical discharge machining. International Journal of Machine Tools and Manufacture, 43(14), 1465–1471. https://doi.org/10.1016/s0890-6955(03)00169-x
Soni, J. S., & G. Chakraverti. (1996). Experimental investigation on migration of material during EDM of die steel (T215 Cr12). 56(1-4), 439–451. https://doi.org/10.1016/0924-0136(95)01858-1
Sumanth, P., Reddy, M.V., Shaik, I., & Rao Maddu, J.R. (2021). Parameter Optimization of EDM Characteristics on Ti-6Al-4V Using Different Electrodes. IOP Conf. Ser.: Mater. Sci. Eng., 1185, 012022. https://doi.org/10.1088/1757-899X/1185/1/012022
Tzeng, Y.F., & Lee, C.Y. (2001). Effects of Powder Characteristics on Electrodischarge Machining Efficiency. The International Journal of Advanced Manufacturing Technology, 17(8), 586–592. https://doi.org/10.1007/s001700170142
Verma, D., Singh, B., Kumar, A., & Rizvi, S. A. (2024). Assessment of Surface Quality during EDM of AISI 4147 with Copper Tool. Int. J. Exp. Res. Rev., 38, 173-181. https://doi.org/10.52756/ijerr.2024.v38.016
Wu, K. L., Yan, B. H., Huang, F. Y., & Chen, S. C. (2005). Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric. International Journal of Machine Tools and Manufacture, 45(10), 1195–1201. https://doi.org/10.1016/j.ijmachtools.2004.12.005