Development and Validation of an ICH-Compliant Optimized RP-HPLC Method for Quantitative Analysis of Favipiravir
DOI:
https://doi.org/10.52756/ijerr.2024.v42.021Keywords:
Favipiravir, RP-HPLC Method, ICH, ValidationAbstract
Favipiravir (FAV) has emerged as a promising antiviral agent. It is particularly effective against influenza and other RNA virus infections. The aim and objective of the present study was developing and optimizing chromatographic conditions for faster analysis of FAV and demonstrating its applicability for tablet assay. The chromatographic separation was obtained using mobile phase with 90:10 % v/v ratio of ammonium acetate buffer (pH 4.5) and methanol on a Waters C18 column (250 x 4.6 mm, 5 µ). A flow rate of 1.4 mL/min was optimized. Chromatographic detection was perform at a wavelength of 323 nm. The FAV retention time was 6.46 min, indicating the efficiency and speed of the method. The developed method was rigorously validated according to ICH guidelines. A strong linear correlation (r2 = 0.9995) was established in the 5–60 ?g/mL range, indicating adequacy for quantitative analysis. The method demonstrated high accuracy, with FAV recovery ranging from 98.77 % to 100.89 %. The % RSD results of less than 2% for intermediate precision and repeatability showed that the method exhibited high precision. The developed HPLC method reduces the Rt. Notably, this method complies with regulatory standards, establishing it as a valuable tool for quality assurance, pharmacological evaluation, and clinical monitoring of FAV. Thus, this validated RP-HPLC method provides a robust and sensitive method for routine FAV quantification, with high accuracy, precision, and compliance results, supporting its potential use in the clinical pharmaceutical industry.
References
Abdallah, D. F., Al-Qaisi, A. M., Fawzy, M. M., Mohamed, M. A., Shahin, M., & Badr, J. M. (2022). The anti-COVID-19 drug favipiravir: Degradation, method development, validation, NMR/LC–MS characterization, and in-vitro safety evaluation. Chemical Papers, 76(10), 6415–6426. https://doi.org/10.1007/s11696-022-02327-5
Abdallah, M. I., Hassan, S. S. M., Al-Othman, Z. A., & Al-Warthan, A. (2016). A gadolinium‐based magnetic ionic liquid for supramolecular dispersive liquid–liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Journal of Separation Science, 39(8), 1607-1614.
https://doi.org/10.1002/jssc.201501233
Abdallah, M. I., Hassan, S. S. M., Al-Othman, Z. A., & Al-Warthan, A. (2016). Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma. Analytical and Bioanalytical Chemistry, 408(3), 823-831. https://doi.org/10.1007/s00216-015-9248-2
Agrawal, U., Raju, R., & Udwadia, Z. F. (2020). Favipiravir: A new and emerging antiviral option in COVID-19. Medical Journal Armed Forces India, 76(4), 370-376. https://doi.org/10.1016/j.mjafi.2020.08.004
Ali, S. N. S., Mobina, L., Mehfuza, M., Seema, P., Ahmed, A., & Khan, G. J. (2021). Analytical method development and validation and force degradation stability indicating favipiravir by RP-HPLC and UV in bulk and pharmaceutical dosage form. Journal of Pharmaceutical Research International, 33(48B), 254-271.
https://doi.org/10.9734/JPRI/2021/v33i48B33283
Ali, S. N., Mobina, L., Mehfuza, M., Seema, P., Ahmed, A., & Khan, G. J. (2021). Analytical method development and validation and force degradation study of favipiravir by RP-HPLC method. Asian Journal of Pharmaceutical Analysis, 11(1), 45-53. https://doi.org/10.5958/2231-5675.2021.00010.5
Bekegnran, C. P., Driouich, J.-S., Breilh, D., Abadie, P., Truel, A., Saivin, S., Mie, C., & Dutertre, M. (2021). Validation and application of an HPLC-UV method for the quantification of favipiravir in human plasma. Therapeutic Drug Monitoring, 43(6), 801-808. https://doi.org/10.1097/FTD.0000000000000930
Bhavar G, Aher K, Khairnar H, Chaudhari H, Shevatkar J, Sisodiya K, Gadara J. (2023) Development and validation of UV spectrophotometric method for estimation of Favipiravir. European Chemical Bulletin, 12(5), 259-269. https://doi.org/10.48047/ecb/2023.12.5.017
Bhavar G. B., Aher K. B., Thorat R. S., Kakad S. J., Pekamwar S. S. (2015). Development and validation of UV Spectrophotometric method for estimation of dolutegravir sodium in tablet dosage form. Malaysian Journal of Analytical Sciences, 19(6), 1156 – 1163.
Bhavar G., Pekamwar S., Aher K., & Thorat R. (2016). High-Performance Liquid Chromatographic and High-Performance Thin-Layer Chromatographic Method for Quantitative Estimation of Dolutegravir sodium in Bulk Drug and Pharmaceutical Dosage Form. Scientia Pharmaceutica, 84(2), 305-320.
https://doi.org/10.3797/scipharm.1507-09
Bhavar, G., Aher, K., Khairnar, H., Chaudhari, H., Shevatkar, J., Sisodiya, K., & Gadara, J. (2023). Development and validation of UV spectrophotometric method for estimation of favipiravir. European Chemical Bulletin, 12(5), 259-269. https://doi.org/10.48047/ecb/2023.12.5.017
Bouchet, S., Chauvin, A., Rousseau, B., Breilh, D., Lascaux, A., & Dutertre, M. (2021). A liquid chromatography–tandem mass spectrometry assay for therapeutic drug monitoring of favipiravir in COVID-19 patients. Journal of Pharmaceutical and Biomedical Analysis, 196, Article 113932. https://doi.org/10.1016/j.jpba.2021.113932
Bulduk, I. (2021). HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Acta Chromatographica, 33(3), 209-215. https://doi.org/10.1556/1326.2020.00828
Bulduk, I., & Tezcan, E. (2020). HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Journal of Research in Pharmacy, 24(3), 411-419. https://doi.org/10.35333/jrp.2020.189
Chakraborty, P., & Charan, S. (2023). A green eco-friendly analytical method development, validation, and stress degradation studies of favipiravir in bulk and different tablet dosages form by UV-spectrophotometric and RP-HPLC methods with their comparison by using ANOVA and in-vitro dissolution studies. International Journal of Pharmaceutical Investigation. 13(2), 312-318. https://doi.org/10.5530/ijpi.13.2.039
Curley, P., Hobson, J., Dwyer, A., Arshad, U., Pertinez, H., & Rannard, S. P. (2021). Development of a highly sensitive bioanalytical assay for the quantification of favipiravir. biorxiv (Preprint.) 2021 Feb 5:2021.02.03.429628. https://doi.org/10.1101/2021.02.03.429628
Das, P., Acharya, S., & Sahu, R. (2018). Bioanalytical method development and validation for the determination of favipiravir in rat plasma by HPLC. Journal of Chromatographic Science, 56(1), 89-95. https://10.3389/fmed.2023.1022605
Ding, L., Zhang, H., & Wang, X. (2021). Development of HPLC method for determination of favipiravir in rat plasma. Journal of Analytical Chemistry, 76(5), 535-540. https://doi.org/10.3390/separations9100303
El-Awady, M. Y., Abdelmonem, N., El-Gendy, O., & El-Halwagy, R. M. A. (2022). Insights on the quantitative concurrent fluorescence-based analysis of anti-COVID-19 drugs remdesivir and favipiravir. Journal of Fluorescence, 32(1), 253-263. https://doi.org/10.1007/s10895-022-02998-z
Eryavuz Onmaz, D., Abusoglu, S., Onmaz, M., Yerlikaya, F. H., & Unlu, A. (2021). Development and validation of a sensitive, fast and simple LC-MS / MS method for the quantitation of favipiravir in human serum. Journal of Chromatography B, 1176, Article 122768. https://doi.org/10.1016/j.jchromb.2021.122768
Furuta, Y., Gowen, B. B., Takahashi, K., Shiraki, K., Smee, D. F., & Barnard, D. L. (2013). Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research, 100(3), 446-454. https://doi.org/10.1016/j.antiviral.2013.09.015
Ghune, V. B., & Tapkir, A. S. (2022). Method development and validation of favipiravir by RP-HPLC. Innovative Journal of Medical Sciences, 6(2), 13-19. https://doi.org/10.22377/ijms.v6i2.170
Gosavi, S., Kulkarni, A., Pawar, S., Dhamane, S., Gorde, P., Bhavar, G., & Shirapure, K. (2023). Comparative analysis of analytical method development and its validation for the simultaneous estimation of bilastine and montelukast sodium in bulk and its tablet formulation by planar chromatography. International Journal of Experimental Research and Review, 32, 387-397. https://doi.org/10.52756/ijerr.2023.v32.034
Habler, K., Brügel, M., Teupser, D., Liebchen, U., Scharf, C., Schönermarck, U., Vogeser, M., & Paal, M. (2021). Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC–MS/MS method in human serum. Journal of Pharmaceutical and Biomedical Analysis, 196, Article 113935. https://doi.org/10.1016/j.jpba.2021.113935
Hailat, M., Al-Ani, I., Hamad, M., Zakareia, Z., & Abu Dayyih, W. (2021). Development and validation of a method for quantification of favipiravir as COVID-19 management in spiked human plasma. Molecules, 26(13), 3789. https://doi.org/10.3390/molecules26133789
Harahap, Y., Noer, R. F., & Simorangkir, T. P. H. (2023). Development and validation of a method for analysis of favipiravir and remdesivir in volumetric absorptive microsampling with ultra-high-performance liquid chromatography–tandem mass spectrophotometry. Frontiers in Medicine, 10.
https://doi.org/10.3389/fmed.2023.1022605
Hung, D. T., Ghula, S., Aziz, J. M. A., Makram, A. M., Tawfik, G. M., Abozaid, A. A., Pancharatnam, R. A., Ibrahim, A. M., Shabouk, M. B., Turnage, M., Nakhare, S., Karmally, Z., Kouz, B., Le, T. N., Alhijazeen, S., Phuong, N. Q., Ads, A. M., Abdelaal, A. H., Nam, N. H., ... Huy, N. T. (2022). The efficacy and adverse effects of favipiravir on patients with COVID-19: A systematic review and meta-analysis of published clinical trials and observational studies. International Journal of Infectious Diseases, 120, 217-227. https://doi.org/10.1016/j.ijid.2022.04.035
ICH harmonised guideline validation of analytical procedures Q2 (R2). (n.d.).
Imam, S. S., et al. (2023). Adjusted green HPLC determination of nirmatrelvir and ritonavir in the new FDA approved co-packaged pharmaceutical dosage using supported computational calculations. Scientific Reports. https://doi.org/10.1038/s41598-022-26944-y.
Kalshetti, M. S., & Adlinge, S. G. (2022). Development and validation of HPLC method for quantification of favipiravir in tablet. Research Journal of Pharmacy and Technology, 15(3), 1319-1322.
https://doi.org/10.52711/0974-360X.2022.00220
Karthikeyan, R., Syed Meerasa, S., Kumar, A., Satyapal, S., Vijayakumar, A., & Venugopal, V. (2023). Quantitative analysis of favipiravir in bulk and pharmaceutical dosage forms using UV visible spectrophotometer. Journal of Medical Pharmaceutical and Allied Sciences, 12(2), 5680-5683. https://doi.org/10.55522/jmpas.v12i2.4410
Koganti, V., Shet, V. V., & Reddy, P. V. (2023). A liquid chromatography–tandem mass spectrometry method development for the quantification of favipiravir drug and its related impurities in rat plasma and its application to pharmacokinetic studies. Biomedical Chromatography, 37(2), e5816. https://doi.org/10.1002/bmc.5816
Lingabathula, S., & Jain, N. (2021). Stability indicative and cost effective analytical method development and validation of favipiravir in bulk and pharmaceutical dosage form by using RP-HPLC. International Journal of Applied Pharmaceutics, 13(4), 265-271. https://doi.org/10.22159/ijap.2021v13i4.40530
Mankar, S. D., Sagar, P., Bhawar, S., Siddheshwar, S., & Dighe, S. (2023). Development and validation of RP-HPLC method for simultaneous estimation of Ertugliflozin and Sitagliptin in bulk drug and tablet dosage form. International Journal of Experimental Research and Review, 32, 288-296. https://doi.org/10.52756/ijerr.2023.v32.025
Nadendla, R., & Abhinandana, P. (2021). A validated high performance liquid chromatographic method for the quantification of favipiravir by PDA detector. International Journal of Life Science and Pharma Research, 11(2), 181-188. https://doi.org/10.22376/ijpbs/lpr.2021.11.2.P181-188
Nithila, P., Raghavendrababu, N., Padmavathi, Y., Neena, G., Sushma, K., & Poojitha, A. (2022). New FTIR method development and validation for quantitative analysis of favipiravir in bulk and pharmaceutical dosage forms. International Journal of Current Pharmaceutical Research, 14(5), 25-29.
https://doi.org/10.22159/ijcpr.2022v14i5.2022
Patel, R., Yadav, D., Singhal, M., Junnuthula, V., & Dyawanapelly, S. (2022). Structural elucidation of alkali degradation impurities of favipiravir from the oral suspension: UPLC-TQ-ESI-MS/MS and NMR. Molecules, 27(17), 5606. https://doi.org/10.3390/molecules27175606
Patil, R., & Godge, R. (2024). Validated Stability Indicating UHPLC Method for the Quantification of Escitalopram and Flupentixol in Pharmaceutical Formulation. International Journal of Experimental Research and Review, 38, 37-45. https://doi.org/10.52756/ijerr.2024.v38.004
Sri, A., Kumar, B., Reddy, C., Sharma, D., Singh, E., & Ali, F. (2023). Fluorimetric determination of antiviral (COVID-19) drug favipiravir in bulk and pharmaceutical dosage forms. Journal of Drug Delivery and Therapeutics, 13(3), 70-78. https://doi.org/10.22270/jddt.v13i3.5770
Taşkın, D. (2022). Development and validation of a rapid HPLC-DAD method for determination of favipiravir in pharmaceutical formulation. Clinical and Experimental Health Sciences, 12(3), 648-652.
https://doi.org/10.33808/clinexphealthsci.992869
Vemuri, S., Lakkaboina, S. R. K., Atla, L. R., Kandula, V. R., & Rajagopalan, S. (2022). Favipiravir (SARS-CoV-2) degradation impurities: Identification and route of degradation mechanism in the finished solid dosage form using LC/LC-MS method. Biomedical Chromatography, e3135. https://doi.org/10.1002/bmc.5367