Deep CNN-based Classification of Brain MRI Images for Alzheimer’s Disease Diagnosis
DOI:
https://doi.org/10.52756/ijerr.2024.v41spl.004Keywords:
Alzheimer, deep learning, dementia, diagnosis, magnetic resonance imagingAbstract
As the leading cause of dementia worldwide, Alzheimer's disease afflicts millions, with progressively impaired abilities to carry out daily activities or communicate and even recognize faces. Although the cause behind lupus is not fully understood, it probably reflects lifestyle choices and environmental factors as well as genetic propensity. The largest obstacles in the diagnosis of these diseases are their often subtle early manifestations and absence of sensitive detection paradigms. Deep-learning algorithms first came to the forefront of medical imaging just a few years ago and were celebrated as sophisticated diagnostic aids, able to spot subtle signs in scans usually hidden from human eyes. We are benefitting from the use of these state-of-the-art algorithms to improve Alzheimer's detection, with one of the largest MRI datasets available today (more than 86,000 images) being used to train our model. In view of this vast data set, it was appreciably combined one to be accurate-centric diagnostic tool. The performance of our novel deep learning model is strong and provided state-of-the-art validation accuracy (99.63%), surpassing existing models These figures highlight the great promise of our model as a verifiable method for detecting early-stage Alzheimer's disease - a significant concern in controlling and managing disease progression. Our research truly is a major step forward in the field of Alzheimer's disease diagnosis by employing cutting-edge deep learning techniques. Early diagnosis allows for better treatment and lower disease burden that can prevent morbidity, mortality and even change many patient outcomes. This is a considerable improvement toward diagnosing Alzheimer's disease with the help of artificial intelligence and presents an expectation for more exact and timely finding.
References
Afzal, S., Maqsood, M., Nazir, F., Khan, U., Aadil, F., Awan, K. M., Mehmood, I., & Song, O.-Y. (2019). A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer’s Stage Detection. IEEE Access, 7, 115528–115539. https://doi.org/10.1109/access.2019.2932786
Aithal, N. (2023). Oasis Alzheimer’s Detection Large-scale brain MRI dataset for deep neural network analysis. https://www.kaggle.com/datasets/ninadaithal/imagesoasis
Al Shehri, W. (2022). Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Computer Science, 8, e1177. https://doi.org/10.7717/peerj-cs.1177
Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal, A. A. S., & Asari, V. K. (2018). The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv. https://doi.org/10.48550/ARXIV.1803.01164
Alsubaie, M. G., Luo, S., & Shaukat, K. (2024). Alzheimer’s Disease Detection Using Deep Learning on Neuroimaging: A Systematic Review. Machine Learning and Knowledge Extraction, 6(1), 464–505. https://doi.org/10.3390/make6010024
Alzheimer’s Association. (2024). Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2024. https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf
Basheera, S., & Satya Sai Ram, M. (2020). A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Computerized Medical Imaging and Graphics, 81, 101713.
https://doi.org/10.1016/j.compmedimag.2020.101713
Beheshti, I., Demirel, H., & Matsuda, H. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine, 83, 109–119. https://doi.org/10.1016/j.compbiomed.2017.02.011
Biswas, G., Madhu, N.R., Sarkar, B., Paul, S., Erfani, H., Alam, Q. (2024). Rare Genetic Disorders: Unraveling the Pathophysiology, Gene Mutations, and Therapeutic Advances in Fabry Disease and Marfan Syndrome. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 199-219., ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_7
Bringas, S., Salomón, S., Duque, R., Lage, C., & Montaña, J. L. (2020). Alzheimer’s Disease stage identification using deep learning models. Journal of Biomedical Informatics, 109, 103514. https://doi.org/10.1016/j.jbi.2020.103514
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-1258.
EL-Geneedy, M., Moustafa, H. E.-D., Khalifa, F., Khater, H., & AbdElhalim, E. (2023). An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alexandria Engineering Journal, 63, 211–221. https://doi.org/10.1016/j.aej.2022.07.062
Guan, Q., Wan, X., Lu, H., Ping, B., Li, D., Wang, L., Zhu, Y., Wang, Y., & Xiang, J. (2019). Deep convolutional neural network Inception-v3 model for differential diagnosing of lymph node in cytological images: a pilot study. Annals of Translational Medicine, 7(14), 307. https://doi.org/10.21037/atm.2019.06.29
Gülmez, B. (2022). A novel deep neural network model based Xception and genetic algorithm for detection of COVID-19 from X-ray images. Annals of Operations Research, 328(1), 617–641. https://doi.org/10.1007/s10479-022-05151-y
Hasan, M. M., Asaduzzaman, M., Rahman, M. M., Hossain, M. S., & Andersson, K. (2021). D3mciAD: Data-Driven Diagnosis of Mild Cognitive Impairment Utilizing Syntactic Images Generation and Neural Nets. In Lecture Notes in Computer Science, pp. 366–377. Springer International Publishing. https://doi.org/10.1007/978-3-030-86993-9_33
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.
Hossain, M. B., Iqbal, S. M. H. S., Islam, M. M., Akhtar, M. N., & Sarker, I. H. (2022). Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images. Informatics in Medicine Unlocked, 30, 100916. https://doi.org/10.1016/j.imu.2022.100916
Keerthana, B., Vana, T. R., Rao, M. S., Sambana, B., & Mishra, P. (2023b). Using CNN
technique and webcam to identify face mask violation. In Springer proceedings in mathematics & statistics (pp. 245–254). https://doi.org/10.1007/978-3-031-15175-0_20
Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A., & Catheline, G. (2018). 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies. arXiv. https://doi.org/10.48550/ARXIV.1801.05968
Kompalli, P. L., Kalidindi, A., Chilukala, J., Nerella, K., Shaik, W., & Cherukuri, D. (2023). A Color Guide for Color Blind People Using Image Processing and OpenCV. International Journal of Online and Biomedical Engineering (IJOE), 19(09), 30–46. https://doi.org/10.3991/ijoe.v19i09.39177
Madhu, N.R., Biswas, G., Paul, S., Adhikari, S., Sarkar, B., Rafeeq, M.M., & Umair, M. (2024). Challenges and Future Opportunities in Rare Genetic Disorders: A Comprehensive Review. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 251-275. ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_9
Mishra, S., Satpathy, S., Malkani, S., Yadav, V., Gupta, V., Rawat, S. S., Malsa, N., Ghosh, A., & shaw, R. N. (2023). A Comprehensive Review on Skin Disease Classification Using Convolutional Neural Network and Support Vector Machine. In Advanced Communication and Intelligent Systems (pp. 726–746). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25088-0_64
Narisetty, N., Kalidindi, A., Bujaranpally, M. V., Arigela, N., & Ch, V. V. (2023). Ameliorating Heart Afzal, S., Maqsood, M., Nazir, F., Khan, U., Aadil, F., Awan, K. M., Mehmood, I., & Song, O.-Y. (2019). A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer’s Stage Detection. IEEE Access, 7, 115528–115539. https://doi.org/10.1109/access.2019.2932786
Aithal, N. (2023). Oasis Alzheimer’s Detection Large-scale brain MRI dataset for deep neural network analysis. https://www.kaggle.com/datasets/ninadaithal/imagesoasis
Al Shehri, W. (2022). Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Computer Science, 8, e1177. https://doi.org/10.7717/peerj-cs.1177
Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal, A. A. S., & Asari, V. K. (2018). The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv. https://doi.org/10.48550/ARXIV.1803.01164
Alsubaie, M. G., Luo, S., & Shaukat, K. (2024). Alzheimer’s Disease Detection Using Deep Learning on Neuroimaging: A Systematic Review. Machine Learning and Knowledge Extraction, 6(1), 464–505. https://doi.org/10.3390/make6010024
Alzheimer’s Association. (2024). Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2024. https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf
Basheera, S., & Satya Sai Ram, M. (2020). A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Computerized Medical Imaging and Graphics, 81, 101713.
https://doi.org/10.1016/j.compmedimag.2020.101713
Beheshti, I., Demirel, H., & Matsuda, H. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine, 83, 109–119. https://doi.org/10.1016/j.compbiomed.2017.02.011
Biswas, G., Madhu, N.R., Sarkar, B., Paul, S., Erfani, H., Alam, Q. (2024). Rare Genetic Disorders: Unraveling the Pathophysiology, Gene Mutations, and Therapeutic Advances in Fabry Disease and Marfan Syndrome. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 199-219., ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_7
Bringas, S., Salomón, S., Duque, R., Lage, C., & Montaña, J. L. (2020). Alzheimer’s Disease stage identification using deep learning models. Journal of Biomedical Informatics, 109, 103514. https://doi.org/10.1016/j.jbi.2020.103514
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-1258.
EL-Geneedy, M., Moustafa, H. E.-D., Khalifa, F., Khater, H., & AbdElhalim, E. (2023). An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alexandria Engineering Journal, 63, 211–221. https://doi.org/10.1016/j.aej.2022.07.062
Guan, Q., Wan, X., Lu, H., Ping, B., Li, D., Wang, L., Zhu, Y., Wang, Y., & Xiang, J. (2019). Deep convolutional neural network Inception-v3 model for differential diagnosing of lymph node in cytological images: a pilot study. Annals of Translational Medicine, 7(14), 307. https://doi.org/10.21037/atm.2019.06.29
Gülmez, B. (2022). A novel deep neural network model based Xception and genetic algorithm for detection of COVID-19 from X-ray images. Annals of Operations Research, 328(1), 617–641. https://doi.org/10.1007/s10479-022-05151-y
Hasan, M. M., Asaduzzaman, M., Rahman, M. M., Hossain, M. S., & Andersson, K. (2021). D3mciAD: Data-Driven Diagnosis of Mild Cognitive Impairment Utilizing Syntactic Images Generation and Neural Nets. In Lecture Notes in Computer Science, pp. 366–377. Springer International Publishing. https://doi.org/10.1007/978-3-030-86993-9_33
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.
Hossain, M. B., Iqbal, S. M. H. S., Islam, M. M., Akhtar, M. N., & Sarker, I. H. (2022). Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images. Informatics in Medicine Unlocked, 30, 100916. https://doi.org/10.1016/j.imu.2022.100916
Keerthana, B., Vana, T. R., Rao, M. S., Sambana, B., & Mishra, P. (2023b). Using CNN
technique and webcam to identify face mask violation. In Springer proceedings in mathematics & statistics (pp. 245–254). https://doi.org/10.1007/978-3-031-15175-0_20
Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A., & Catheline, G. (2018). 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies. arXiv. https://doi.org/10.48550/ARXIV.1801.05968
Kompalli, P. L., Kalidindi, A., Chilukala, J., Nerella, K., Shaik, W., & Cherukuri, D. (2023). A Color Guide for Color Blind People Using Image Processing and OpenCV. International Journal of Online and Biomedical Engineering (IJOE), 19(09), 30–46. https://doi.org/10.3991/ijoe.v19i09.39177
Madhu, N.R., Biswas, G., Paul, S., Adhikari, S., Sarkar, B., Rafeeq, M.M., & Umair, M. (2024). Challenges and Future Opportunities in Rare Genetic Disorders: A Comprehensive Review. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 251-275. ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_9
Mishra, S., Satpathy, S., Malkani, S., Yadav, V., Gupta, V., Rawat, S. S., Malsa, N., Ghosh, A., & shaw, R. N. (2023). A Comprehensive Review on Skin Disease Classification Using Convolutional Neural Network and Support Vector Machine. In Advanced Communication and Intelligent Systems (pp. 726–746). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25088-0_64
Narisetty, N., Kalidindi, A., Bujaranpally, M. V., Arigela, N., & Ch, V. V. (2023). Ameliorating Heart Diseases Prediction using Machine Learning Technique for Optimal Solution. International Journal of Online and Biomedical Engineering (IJOE), 19(16), 156–165. https://doi.org/10.3991/ijoe.v19i16.42071
Nawaz, A., Anwar, S. M., Liaqat, R., Iqbal, J., Bagci, U., & Majid, M. (2020, November). Deep Convolutional Neural Network based Classification of Alzheimer’s Disease using MRI Data. 2020 IEEE 23rd International Multitopic Conference (INMIC). https://doi.org/10.1109/inmic50486.2020.9318172
Orouskhani, M., Zhu, C., Rostamian, S., Shomal Zadeh, F., Shafiei, M., & Orouskhani, Y. (2022). Alzheimer’s disease detection from structural MRI using conditional deep triplet network. Neuroscience Informatics, 2(4), 100066. https://doi.org/10.1016/j.neuri.2022.100066
Pora, W., Kasamsumran, N., Tharawatcharasart, K., Ampol, R., Siriyasatien, P., & Jariyapan, N. (2023). Enhancement of VGG16 model with multi-view and spatial dropout for classification of mosquito vectors. PLOS ONE, 18(7), e0284330. https://doi.org/10.1371/journal.pone.0284330
Raju, M., Thirupalani, M., Vidhyabharathi, S., & Thilagavathi, S. (2021). Deep Learning Based Multilevel Classification of Alzheimer’s Disease using MRI Scans. IOP Conference Series: Materials Science and Engineering, 1084(1), 12017. https://doi.org/10.1088/1757-899x/1084/1/012017
Rao, M., Kumar, S., & Rao, K. (2023). Effective medical leaf identification using hybridization of GMM-CNN. International Journal of Experimental Research and Review, 32, 115-123. https://doi.org/10.52756/ijerr.2023.v32.009
Rao, M.S., Uma Maheswaran, S.K., Sattaru, N.C., Abdullah, K.H., Pandey, U.K., & Biban, L. (2022). A Critical Understanding of Integrated Artificial Intelligence Techniques for the Healthcare Prediction System. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2022, pp. 728-731. https://doi: 10.1109/ICACITE53722.2022.9823678.
Rao, M.S., Kumar, S.P., & Rao, K.S. (2023b). A Methodology for Identification of Ayurvedic Plant Based on Machine Learning Algorithms. International Journal of Computing and Digital Systems, 2023, 10233-10241. http://dx.doi.org/10.12785/ijcds/140196
Saha, A., Sanyal, T., Mukherjee, P., Sen, K., & Madhu, N.R. (2024). Response of Cellular Stress Toward the Hormetic Phytochemicals in Brain Aging. In: Pathak, S., Banerjee, A. (eds) Neuroprotective Effects of Phytochemicals in Brain Ageing. Springer, Singapore. pp. 57-95. https://doi.org/10.1007/978-981-99-7269-2_4
Saleem, T. J., Zahra, S. R., Wu, F., Alwakeel, A., Alwakeel, M., Jeribi, F., & Hijji, M. (2022). Deep Learning-Based Diagnosis of Alzheimer’s Disease. Journal of Personalized Medicine, 12(5), 815. https://doi.org/10.3390/jpm12050815
Yavanamandha, P., Keerthana, B., Jahnavi, P., Rao, K. V., & Kumar, C. R. (2023). Machine Learning-Based Gesture Recognition for Communication with the Deaf and Dumb. International Journal of Experimental Research and Review, 34(Special Vo), 26–35. https://doi.org/10.52756/ijerr.2023.v34spl.004
Yildirim, M., & Cinar, A. (2020). Classification of Alzheimer’s Disease MRI Images with CNN Based Hybrid Method. Ingénierie Des Systèmes d Information, 25(4), 413–418. https://doi.org/10.18280/isi.250402
Zhang, Q., Yuan, Q., Zeng, C., Li, X., & Wei, Y. (2018). Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4274–4288. https://doi.org/10.1109/tgrs.2018.2810208