Deep CNN-based Classification of Brain MRI Images for Alzheimer’s Disease Diagnosis

Authors

  • D. Dakshayani Himabindu Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India https://orcid.org/0000-0002-7755-5122
  • B. Pranalini Department of Computer Science and Engineering, Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India https://orcid.org/0009-0009-7912-4447
  • Mirtipati Satish Kumar Department of Computer Science and Engineering, Centurion University of Technology and Management, Vizianagaram, Andhra Pradesh, India https://orcid.org/0009-0000-2920-7812
  • Alluri Neethika Department of Information Technology, S.R.K.R. Engineering College, Bhimavaram, Andhra Pradesh, India https://orcid.org/0009-0002-9624-2612
  • Bhavya Sree N Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India
  • Manasa C Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India
  • Harshitha B Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India
  • Keerthana S Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India

DOI:

https://doi.org/10.52756/ijerr.2024.v41spl.004

Keywords:

Alzheimer, deep learning, dementia, diagnosis, magnetic resonance imaging

Abstract

As the leading cause of dementia worldwide, Alzheimer's disease afflicts millions, with progressively impaired abilities to carry out daily activities or communicate and even recognize faces. Although the cause behind lupus is not fully understood, it probably reflects lifestyle choices and environmental factors as well as genetic propensity. The largest obstacles in the diagnosis of these diseases are their often subtle early manifestations and absence of sensitive detection paradigms. Deep-learning algorithms first came to the forefront of medical imaging just a few years ago and were celebrated as sophisticated diagnostic aids, able to spot subtle signs in scans usually hidden from human eyes. We are benefitting from the use of these state-of-the-art algorithms to improve Alzheimer's detection, with one of the largest MRI datasets available today (more than 86,000 images) being used to train our model. In view of this vast data set, it was appreciably combined one to be accurate-centric diagnostic tool. The performance of our novel deep learning model is strong and provided state-of-the-art validation accuracy (99.63%), surpassing existing models These figures highlight the great promise of our model as a verifiable method for detecting early-stage Alzheimer's disease - a significant concern in controlling and managing disease progression. Our research truly is a major step forward in the field of Alzheimer's disease diagnosis by employing cutting-edge deep learning techniques. Early diagnosis allows for better treatment and lower disease burden that can prevent morbidity, mortality and even change many patient outcomes. This is a considerable improvement toward diagnosing Alzheimer's disease with the help of artificial intelligence and presents an expectation for more exact and timely finding.

References

Afzal, S., Maqsood, M., Nazir, F., Khan, U., Aadil, F., Awan, K. M., Mehmood, I., & Song, O.-Y. (2019). A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer’s Stage Detection. IEEE Access, 7, 115528–115539. https://doi.org/10.1109/access.2019.2932786

Aithal, N. (2023). Oasis Alzheimer’s Detection Large-scale brain MRI dataset for deep neural network analysis. https://www.kaggle.com/datasets/ninadaithal/imagesoasis

Al Shehri, W. (2022). Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Computer Science, 8, e1177. https://doi.org/10.7717/peerj-cs.1177

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal, A. A. S., & Asari, V. K. (2018). The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv. https://doi.org/10.48550/ARXIV.1803.01164

Alsubaie, M. G., Luo, S., & Shaukat, K. (2024). Alzheimer’s Disease Detection Using Deep Learning on Neuroimaging: A Systematic Review. Machine Learning and Knowledge Extraction, 6(1), 464–505. https://doi.org/10.3390/make6010024

Alzheimer’s Association. (2024). Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2024. https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf

Basheera, S., & Satya Sai Ram, M. (2020). A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Computerized Medical Imaging and Graphics, 81, 101713.

https://doi.org/10.1016/j.compmedimag.2020.101713

Beheshti, I., Demirel, H., & Matsuda, H. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine, 83, 109–119. https://doi.org/10.1016/j.compbiomed.2017.02.011

Biswas, G., Madhu, N.R., Sarkar, B., Paul, S., Erfani, H., Alam, Q. (2024). Rare Genetic Disorders: Unraveling the Pathophysiology, Gene Mutations, and Therapeutic Advances in Fabry Disease and Marfan Syndrome. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 199-219., ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_7

Bringas, S., Salomón, S., Duque, R., Lage, C., & Montaña, J. L. (2020). Alzheimer’s Disease stage identification using deep learning models. Journal of Biomedical Informatics, 109, 103514. https://doi.org/10.1016/j.jbi.2020.103514

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-1258.

EL-Geneedy, M., Moustafa, H. E.-D., Khalifa, F., Khater, H., & AbdElhalim, E. (2023). An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alexandria Engineering Journal, 63, 211–221. https://doi.org/10.1016/j.aej.2022.07.062

Guan, Q., Wan, X., Lu, H., Ping, B., Li, D., Wang, L., Zhu, Y., Wang, Y., & Xiang, J. (2019). Deep convolutional neural network Inception-v3 model for differential diagnosing of lymph node in cytological images: a pilot study. Annals of Translational Medicine, 7(14), 307. https://doi.org/10.21037/atm.2019.06.29

Gülmez, B. (2022). A novel deep neural network model based Xception and genetic algorithm for detection of COVID-19 from X-ray images. Annals of Operations Research, 328(1), 617–641. https://doi.org/10.1007/s10479-022-05151-y

Hasan, M. M., Asaduzzaman, M., Rahman, M. M., Hossain, M. S., & Andersson, K. (2021). D3mciAD: Data-Driven Diagnosis of Mild Cognitive Impairment Utilizing Syntactic Images Generation and Neural Nets. In Lecture Notes in Computer Science, pp. 366–377. Springer International Publishing. https://doi.org/10.1007/978-3-030-86993-9_33

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.

Hossain, M. B., Iqbal, S. M. H. S., Islam, M. M., Akhtar, M. N., & Sarker, I. H. (2022). Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images. Informatics in Medicine Unlocked, 30, 100916. https://doi.org/10.1016/j.imu.2022.100916

Keerthana, B., Vana, T. R., Rao, M. S., Sambana, B., & Mishra, P. (2023b). Using CNN

technique and webcam to identify face mask violation. In Springer proceedings in mathematics & statistics (pp. 245–254). https://doi.org/10.1007/978-3-031-15175-0_20

Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A., & Catheline, G. (2018). 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies. arXiv. https://doi.org/10.48550/ARXIV.1801.05968

Kompalli, P. L., Kalidindi, A., Chilukala, J., Nerella, K., Shaik, W., & Cherukuri, D. (2023). A Color Guide for Color Blind People Using Image Processing and OpenCV. International Journal of Online and Biomedical Engineering (IJOE), 19(09), 30–46. https://doi.org/10.3991/ijoe.v19i09.39177

Madhu, N.R., Biswas, G., Paul, S., Adhikari, S., Sarkar, B., Rafeeq, M.M., & Umair, M. (2024). Challenges and Future Opportunities in Rare Genetic Disorders: A Comprehensive Review. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 251-275. ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_9

Mishra, S., Satpathy, S., Malkani, S., Yadav, V., Gupta, V., Rawat, S. S., Malsa, N., Ghosh, A., & shaw, R. N. (2023). A Comprehensive Review on Skin Disease Classification Using Convolutional Neural Network and Support Vector Machine. In Advanced Communication and Intelligent Systems (pp. 726–746). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25088-0_64

Narisetty, N., Kalidindi, A., Bujaranpally, M. V., Arigela, N., & Ch, V. V. (2023). Ameliorating Heart Afzal, S., Maqsood, M., Nazir, F., Khan, U., Aadil, F., Awan, K. M., Mehmood, I., & Song, O.-Y. (2019). A Data Augmentation-Based Framework to Handle Class Imbalance Problem for Alzheimer’s Stage Detection. IEEE Access, 7, 115528–115539. https://doi.org/10.1109/access.2019.2932786

Aithal, N. (2023). Oasis Alzheimer’s Detection Large-scale brain MRI dataset for deep neural network analysis. https://www.kaggle.com/datasets/ninadaithal/imagesoasis

Al Shehri, W. (2022). Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Computer Science, 8, e1177. https://doi.org/10.7717/peerj-cs.1177

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal, A. A. S., & Asari, V. K. (2018). The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv. https://doi.org/10.48550/ARXIV.1803.01164

Alsubaie, M. G., Luo, S., & Shaukat, K. (2024). Alzheimer’s Disease Detection Using Deep Learning on Neuroimaging: A Systematic Review. Machine Learning and Knowledge Extraction, 6(1), 464–505. https://doi.org/10.3390/make6010024

Alzheimer’s Association. (2024). Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2024. https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf

Basheera, S., & Satya Sai Ram, M. (2020). A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Computerized Medical Imaging and Graphics, 81, 101713.

https://doi.org/10.1016/j.compmedimag.2020.101713

Beheshti, I., Demirel, H., & Matsuda, H. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Computers in Biology and Medicine, 83, 109–119. https://doi.org/10.1016/j.compbiomed.2017.02.011

Biswas, G., Madhu, N.R., Sarkar, B., Paul, S., Erfani, H., Alam, Q. (2024). Rare Genetic Disorders: Unraveling the Pathophysiology, Gene Mutations, and Therapeutic Advances in Fabry Disease and Marfan Syndrome. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 199-219., ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_7

Bringas, S., Salomón, S., Duque, R., Lage, C., & Montaña, J. L. (2020). Alzheimer’s Disease stage identification using deep learning models. Journal of Biomedical Informatics, 109, 103514. https://doi.org/10.1016/j.jbi.2020.103514

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251-1258.

EL-Geneedy, M., Moustafa, H. E.-D., Khalifa, F., Khater, H., & AbdElhalim, E. (2023). An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alexandria Engineering Journal, 63, 211–221. https://doi.org/10.1016/j.aej.2022.07.062

Guan, Q., Wan, X., Lu, H., Ping, B., Li, D., Wang, L., Zhu, Y., Wang, Y., & Xiang, J. (2019). Deep convolutional neural network Inception-v3 model for differential diagnosing of lymph node in cytological images: a pilot study. Annals of Translational Medicine, 7(14), 307. https://doi.org/10.21037/atm.2019.06.29

Gülmez, B. (2022). A novel deep neural network model based Xception and genetic algorithm for detection of COVID-19 from X-ray images. Annals of Operations Research, 328(1), 617–641. https://doi.org/10.1007/s10479-022-05151-y

Hasan, M. M., Asaduzzaman, M., Rahman, M. M., Hossain, M. S., & Andersson, K. (2021). D3mciAD: Data-Driven Diagnosis of Mild Cognitive Impairment Utilizing Syntactic Images Generation and Neural Nets. In Lecture Notes in Computer Science, pp. 366–377. Springer International Publishing. https://doi.org/10.1007/978-3-030-86993-9_33

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.

Hossain, M. B., Iqbal, S. M. H. S., Islam, M. M., Akhtar, M. N., & Sarker, I. H. (2022). Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images. Informatics in Medicine Unlocked, 30, 100916. https://doi.org/10.1016/j.imu.2022.100916

Keerthana, B., Vana, T. R., Rao, M. S., Sambana, B., & Mishra, P. (2023b). Using CNN

technique and webcam to identify face mask violation. In Springer proceedings in mathematics & statistics (pp. 245–254). https://doi.org/10.1007/978-3-031-15175-0_20

Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A., & Catheline, G. (2018). 3D CNN-based classification using sMRI and MD-DTI images for Alzheimer disease studies. arXiv. https://doi.org/10.48550/ARXIV.1801.05968

Kompalli, P. L., Kalidindi, A., Chilukala, J., Nerella, K., Shaik, W., & Cherukuri, D. (2023). A Color Guide for Color Blind People Using Image Processing and OpenCV. International Journal of Online and Biomedical Engineering (IJOE), 19(09), 30–46. https://doi.org/10.3991/ijoe.v19i09.39177

Madhu, N.R., Biswas, G., Paul, S., Adhikari, S., Sarkar, B., Rafeeq, M.M., & Umair, M. (2024). Challenges and Future Opportunities in Rare Genetic Disorders: A Comprehensive Review. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 251-275. ISBN: 978-981-99-9323-9, DOI: https://doi.org/10.1007/978-981-99-9323-9_9

Mishra, S., Satpathy, S., Malkani, S., Yadav, V., Gupta, V., Rawat, S. S., Malsa, N., Ghosh, A., & shaw, R. N. (2023). A Comprehensive Review on Skin Disease Classification Using Convolutional Neural Network and Support Vector Machine. In Advanced Communication and Intelligent Systems (pp. 726–746). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-25088-0_64

Narisetty, N., Kalidindi, A., Bujaranpally, M. V., Arigela, N., & Ch, V. V. (2023). Ameliorating Heart Diseases Prediction using Machine Learning Technique for Optimal Solution. International Journal of Online and Biomedical Engineering (IJOE), 19(16), 156–165. https://doi.org/10.3991/ijoe.v19i16.42071

Nawaz, A., Anwar, S. M., Liaqat, R., Iqbal, J., Bagci, U., & Majid, M. (2020, November). Deep Convolutional Neural Network based Classification of Alzheimer’s Disease using MRI Data. 2020 IEEE 23rd International Multitopic Conference (INMIC). https://doi.org/10.1109/inmic50486.2020.9318172

Orouskhani, M., Zhu, C., Rostamian, S., Shomal Zadeh, F., Shafiei, M., & Orouskhani, Y. (2022). Alzheimer’s disease detection from structural MRI using conditional deep triplet network. Neuroscience Informatics, 2(4), 100066. https://doi.org/10.1016/j.neuri.2022.100066

Pora, W., Kasamsumran, N., Tharawatcharasart, K., Ampol, R., Siriyasatien, P., & Jariyapan, N. (2023). Enhancement of VGG16 model with multi-view and spatial dropout for classification of mosquito vectors. PLOS ONE, 18(7), e0284330. https://doi.org/10.1371/journal.pone.0284330

Raju, M., Thirupalani, M., Vidhyabharathi, S., & Thilagavathi, S. (2021). Deep Learning Based Multilevel Classification of Alzheimer’s Disease using MRI Scans. IOP Conference Series: Materials Science and Engineering, 1084(1), 12017. https://doi.org/10.1088/1757-899x/1084/1/012017

Rao, M., Kumar, S., & Rao, K. (2023). Effective medical leaf identification using hybridization of GMM-CNN. International Journal of Experimental Research and Review, 32, 115-123. https://doi.org/10.52756/ijerr.2023.v32.009

Rao, M.S., Uma Maheswaran, S.K., Sattaru, N.C., Abdullah, K.H., Pandey, U.K., & Biban, L. (2022). A Critical Understanding of Integrated Artificial Intelligence Techniques for the Healthcare Prediction System. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2022, pp. 728-731. https://doi: 10.1109/ICACITE53722.2022.9823678.

Rao, M.S., Kumar, S.P., & Rao, K.S. (2023b). A Methodology for Identification of Ayurvedic Plant Based on Machine Learning Algorithms. International Journal of Computing and Digital Systems, 2023, 10233-10241. http://dx.doi.org/10.12785/ijcds/140196

Saha, A., Sanyal, T., Mukherjee, P., Sen, K., & Madhu, N.R. (2024). Response of Cellular Stress Toward the Hormetic Phytochemicals in Brain Aging. In: Pathak, S., Banerjee, A. (eds) Neuroprotective Effects of Phytochemicals in Brain Ageing. Springer, Singapore. pp. 57-95. https://doi.org/10.1007/978-981-99-7269-2_4

Saleem, T. J., Zahra, S. R., Wu, F., Alwakeel, A., Alwakeel, M., Jeribi, F., & Hijji, M. (2022). Deep Learning-Based Diagnosis of Alzheimer’s Disease. Journal of Personalized Medicine, 12(5), 815. https://doi.org/10.3390/jpm12050815

Yavanamandha, P., Keerthana, B., Jahnavi, P., Rao, K. V., & Kumar, C. R. (2023). Machine Learning-Based Gesture Recognition for Communication with the Deaf and Dumb. International Journal of Experimental Research and Review, 34(Special Vo), 26–35. https://doi.org/10.52756/ijerr.2023.v34spl.004

Yildirim, M., & Cinar, A. (2020). Classification of Alzheimer’s Disease MRI Images with CNN Based Hybrid Method. Ingénierie Des Systèmes d Information, 25(4), 413–418. https://doi.org/10.18280/isi.250402

Zhang, Q., Yuan, Q., Zeng, C., Li, X., & Wei, Y. (2018). Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4274–4288. https://doi.org/10.1109/tgrs.2018.2810208

Published

2024-07-30

How to Cite

Himabindu, D. D., Pranalini, B., Kumar, M. S., Neethika, A., Sree N, B., C, M., … S, K. (2024). Deep CNN-based Classification of Brain MRI Images for Alzheimer’s Disease Diagnosis. International Journal of Experimental Research and Review, 41(Spl Vol), 43–54. https://doi.org/10.52756/ijerr.2024.v41spl.004