Performance Analysis of Millimeter-Wave Propagation Characteristics for Various Channel Models in the Indoor Environment
DOI:
https://doi.org/10.52756/ijerr.2024.v44spl.009Keywords:
Millimeter-wave propagation characteristics, beyond 5G, channel modeling, indoor small-cell, 3D ray launching, channel modellingAbstract
Due to the recent surge in the proliferation of smart wireless devices that feature higher data speeds, there has been a rise in demand for faster indoor data communication services. Moreover, there is a sharp increase in the amount of mobile data being generated worldwide, and much of this data comes from residential wireless applications like high-definition TV, device-to-device communication, and high data rate indoor networks (i.e., local and cellular). These technologies need large capacity, high data rate indoor wireless networks with huge bandwidth. Consequently, a greater interest exists in implementing an effective and trustworthy indoor propagation model for next-generation wireless systems operating in the massively bandwidth-rich millimeter wave (mm-wave) frequency range. The analysis of mm-wave propagation characteristics in an indoor environment using the ray tracing approach is proposed in this paper. Propagation modeling for 60 GHz bands is included. The aspects of wideband propagation characteristics such as angular spread, path loss, delay spread, and power delay profile are modeled in this paper. The position of transceivers, antenna effect, and attenuation, in the hallways, and stairwells will all be considered while determining the propagation parameters. This includes wave propagation characteristics like absorption, reflection, and diffraction by building structures and furniture. The specifications for propagation characteristics are included in the article for developing indoor local and cellular networks. In this paper, the IRT model has been tested at 60 GHz for potential mobile communication and is identified as the best method for predicting signal attenuation caused by objects, barriers, or humans within buildings in internal millimeter wave transmission.
References
Abdulwahid, M. M., Al-Ani, O. A. S., Mosleh, M. F., & Abd-Alhameed, R. A. (2019, April). Investigation of millimeter-wave indoor propagation at different frequencies. IEEE, In 2019 4th Scientific International Conference Najaf (SICN), pp. 25-30. https://doi.org/10.1109/SICN47020.2019.9019358 DOI: https://doi.org/10.1109/SICN47020.2019.9019358
Ahumada, L., Carreño, E., Anglès, A., Dujovne, D., & Palacios Játiva, P. (2024). Behind the Door: Practical Parameterization of Propagation Parameters for IEEE 802.11 ad Use Cases. Technologies, 12(6), 85. https://doi.org/10.3390/technologies12060085 DOI: https://doi.org/10.3390/technologies12060085
Ali, S., Sohail, M., Shah, S. B. H., Koundal, D., Hassan, M. A., Abdollahi, A., & Khan, I. U. (2021). New trends and advancement in next generation mobile wireless communication (6G): a survey. Wireless Communications and Mobile Computing, 2021(1), 9614520. https://doi.org/10.1155/2021/9614520 DOI: https://doi.org/10.1155/2021/9614520
Al-jzari, A., Hu, J., & Salous, S. (2024, March). Millimeter-Wave and Sub-THz Channel Measurements and Characterization Analysis in a Street Canyon Scenario. IEEE, In 2024 18th European Conference on Antennas and Propagation (EuCAP), pp. 1-5. https://doi.org/10.23919/EuCAP60739.2024.10500998 DOI: https://doi.org/10.23919/EuCAP60739.2024.10500998
Al-Saman, A., Cheffena, M., Elijah, O., Al-Gumaei, Y. A., Abdul Rahim, S. K., & Al-Hadhrami, T. (2021). Survey of millimeter-wave propagation measurements and models in indoor environments. Electronics, 10(14), 1653. https://doi.org/10.3390/electronics10141653 DOI: https://doi.org/10.3390/electronics10141653
Aragón-Zavala, A. A. (2017). Indoor wireless communications: From theory to implementation. John Wiley & Sons. pp. 1-440.
https://doi.org/10.1002/9781119004547 DOI: https://doi.org/10.1002/9781119004547
Aslam, M. Z., Corre, Y., & Lostanlen, Y. (2017, September). Effect of human crowd obstruction on the performance of an urban small-cell millimeter-wave access network. IEEE, In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1-5.
https://doi.org/10.1109/VTCFall.2017.8288371 DOI: https://doi.org/10.1109/VTCFall.2017.8288371
Chaudhari, S., & Dinesh, B. (2023). A study on mobile telecommunication systems using OpenAirInterface platform. Int. J. Exp. Res. Rev., 31(Spl Volume), 150-167. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.015 DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.015
Dangi, R., Lalwani, P., Choudhary, G., You, I., & Pau, G. (2021). Study and investigation on 5G technology: A systematic review. Sensors, 22(1), 26. https://doi.org/10.3390/s22010026 DOI: https://doi.org/10.3390/s22010026
Ebrahimizadeh, J., Madannejad, A., Cai, X., Vinogradov, E., & Vandenbosch, G. A. (2024). RCS-Based 3D Millimeter-Wave Channel Modeling Using Quasi-Deterministic Ray Tracing. IEEE Transactions on Antennas and Propagation.
https://doi.org/10.1109/TAP.2024.3365859 DOI: https://doi.org/10.1109/TAP.2024.3365859
Hossain, F., Geok, T. K., Rahman, T. A., Hindia, M. N., Dimyati, K., & Abdaziz, A. (2018). Indoor millimeter-wave propagation prediction by measurement and ray tracing simulation at 38 GHz. Symmetry, 10(10), 464. https://doi.org/10.3390/sym10100464 DOI: https://doi.org/10.3390/sym10100464
Hou, C., Li, Q., Zhang, J., Zhang, Y., Guo, L., Zhu, X., ... & Li, S. (2023). Research on Propagation Characteristics Based on Channel Measurements and Simulations in a Typical Open Indoor Environment. Electronics, 12(17), 3546.
https://doi.org/10.3390/electronics12173546 DOI: https://doi.org/10.3390/electronics12173546
Itu-r (ed.) (2023) Compilation of measurement data relating to building entry loss https://www.itu.int/pub/R-REP-P.2346-5-2023
Ju, S., Xing, Y., Kanhere, O., & Rappaport, T. S. (2021). Millimeter wave and sub-terahertz spatial statistical channel model for an indoor office building. IEEE Journal on Selected Areas in Communications, 39(6), 1561-1575.
https://doi.org/10.1109/JSAC.2021.3071844 DOI: https://doi.org/10.1109/JSAC.2021.3071844
Kumar, R., Garg, A., Shah, H., & Kaur, B. (2023). Survey on performance parameters of planar microwave antennas. Int. J. Exp. Res. Rev., 31(Spl Volume), 186-194. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.017 DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.017
Lee, J., Kim, K. W., Kim, M. D., & Park, J. J. (2019, March). Directional delay spread characteristics of outdoor-to-indoor propagation based on millimeter-wave measurements. IEEE, In 2019 13th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5).
Lee, J., Kim, K. W., Park, J. J., Kim, M. D., & Kwon, H. K. (2022, March). Omnidirectional Millimeter-Wave Propagation Characteristics of Corridor Environments based on Measurements at 28, 38, 71 and 82 GHz. IEEE, In 2022 16th European Conference on Antennas and Propagation (EuCAP), pp. 1-5. https://doi.org/10.23919/EuCAP53622.2022.9769436 DOI: https://doi.org/10.23919/EuCAP53622.2022.9769436
Lübke, M., Fuchs, J., Dubey, A., Hamoud, H., Dressler, F., Weigel, R., & Lurz, F. (2021, September). Validation and analysis of the propagation channel at 60 GHz for vehicular communication. IEEE, In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1-7. https://doi.org/10.1109/VTC2021-Fall52928.2021.9625066 DOI: https://doi.org/10.1109/VTC2021-Fall52928.2021.9625066
Majed, M. B., Rahman, T. A., Aziz, O. A., Hindia, M. N., & Hanafi, E. (2018). Channel characterization and path loss modeling in indoor environment at 4.5, 28, and 38 GHz for 5G cellular networks. International Journal of Antennas and Propagation, 2018(1), 9142367. https://doi.org/10.1155/2018/9142367 DOI: https://doi.org/10.1155/2018/9142367
Moraitis, N., & Nikita, K. S. (2024, March). Propagation Modeling in an Indoor Environment at Sub-THz Frequencies Based on Ray Tracing. IEEE, In 2024 18th European Conference on Antennas and Propagation (EuCAP), pp. 1-5.
https://doi.org/10.23919/EuCAP60739.2024.10501070 DOI: https://doi.org/10.23919/EuCAP60739.2024.10501070
Possenti, L., Barbiroli, M., Vitucci, E. M., Fuschini, F., Fosci, M., & Degli-Esposti, V. (2023). A Study on mm-wave Propagation in and around Buildings. IEEE Open Journal of Antennas and Propagation. https://doi.org/10.1109/OJAP.2023.3297201 DOI: https://doi.org/10.1109/OJAP.2023.3297201
Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029-3056. https://doi.org/10.1109/TCOMM.2015.2434384 DOI: https://doi.org/10.1109/TCOMM.2015.2434384
Ren, A., Liu, Y., & Li, S. (2020, September). Simulation and Analysis of Millimeter-Wave Propagation Characteristics at 60 GHz in Corridor Environment. IEEE, In 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1-3. https://doi.org/10.1109/ICMMT49418.2020.9386660 DOI: https://doi.org/10.1109/ICMMT49418.2020.9386660
Rudd, R., Craig, K., Ganley, M., & Hartless, R. (2014). Building materials and propagation. Final Report, Ofcom, 2604. https://www.ofcom.org.uk/__data/assets/pdf_file/0034/55879/ihp_final_report.pdf
Samad, M. A., Choi, D. Y., Son, H., & Choi, K. (2023). Analysis of centimeter and millimeter-wave path loss at emergency exit. IEEE Access, 11, 34217-34226. https://doi.org/10.1109/ACCESS.2023.3264648 DOI: https://doi.org/10.1109/ACCESS.2023.3264648
Schott, A., Ichkov, A., Mähönen, P., & Simi?, L. (2023, March). Measurement validation of ray-tracing propagation modeling for mm-wave networking studies: How detailed is detailed enough? IEEE, In 2023 17th European Conference on Antennas and Propagation (EuCAP), pp. 1-5. https://doi.org/10.23919/EuCAP57121.2023.10132941 DOI: https://doi.org/10.23919/EuCAP57121.2023.10132941
Sun, D., Liu, Y., & Li, S. (2018, May). Simulation and analysis of 60GHz millimeter-wave propagation characteristics in corridor environment. IEEE, In 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1-3. https://doi.org/10.1109/ICMMT.2018.8563468 DOI: https://doi.org/10.1109/ICMMT.2018.8563468
Topal, O. A., Li, Z., Ozger, M., Schupke, D., Björnson, E., & Cavdar, C. (2024). Millimeter-Wave channel modeling and coverage analysis for indoor dense spaces. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/OJAP.2023.3297201 DOI: https://doi.org/10.1109/TVT.2024.3463193
Vengurlekar, J., & Saxena, A. (2024). Annular Beam Driven Metamaterial Backward Wave Oscillator. International Journal of Experimental Research and Review, 37(Special Vo), 131-138. https://doi.org/10.52756/ijerr.2024.v37spl.011 DOI: https://doi.org/10.52756/ijerr.2024.v37spl.011
Wang, M., Liu, Y., Li, S., & Chen, Z. (2017, May). 60 GHz millimeter-wave propagation characteristics in indoor environment. IEEE, In 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), pp. 749-752.
https://doi.org/10.1109/ICCSN.2017.8230211 DOI: https://doi.org/10.1109/ICCSN.2017.8230211
Wang, Q., Ai, B., Guan, K., Matolak, D. W., He, R., & Zhou, X. (2016). Ray?based statistical propagation modeling for indoor corridor scenarios at 15 GHz. International Journal of Antennas and Propagation, 2016(1), 2523913.
https://dx.doi.org/10.1155/2016/2523913 DOI: https://doi.org/10.1155/2016/2523913
Yun, Z., & Iskander, M. F. (2024). Radio propagation modeling and simulation using ray tracing. Cham: Springer International Publishing. In The Advancing World of Applied Electromagnetics: In Honor and Appreciation of Magdy Fahmy Iskander, pp. 251-279. https://doi.org/10.1007/978-3-031-39824-7_10 DOI: https://doi.org/10.1007/978-3-031-39824-7_10
Zulkefly, N. R., Aziz, O. A., Shayea, I., & Al-Saman, A. (2024). Path Loss Models for 5G Communications System in Corridors Environment. Journal of Advanced Research in Applied Sciences and Engineering Technology, 46(1), 86-96.
https://doi.org/10.37934/araset.46.1.8696 DOI: https://doi.org/10.37934/araset.46.1.8696
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.