Quantitative Phytochemical Investigation, Antibacterial Potency, and Drug-ability Assessment of Three Indian Medicinal Plants Leaf Extracts Using Bioinformatics Tools

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v42.031

Keywords:

Indian medicinal plant, antibacterial potency, gas chromatography-mass spectrometry, bioinformatics tool, molecular docking study, toxicity prediction

Abstract

Natural regimens have long-held ethnomedicinal values, serving as primary sources for mainstream medicine. Therefore, scientists are paying more attention to studying the biological activity of existing plant species in organized ways to select potent bioactive metabolites to use for specific therapeutic purposes. This study used the same approach to find potent antibacterial phytoconstituents in three well-known Indian medicinal plants: Psidium guajava L., Syzygium cumini L. and Punica granatum L. In the earlier study, methanolic leaf extracts of the above plant extracts were more effective than n-hexane extracts against biofilm and drug-resistant pathogenic bacteria. Accordingly, we selected methanolic crude extracts for gas chromatography-mass spectrometry (GC-MS) to identify the phytoconstituents presented. In addition, we added a few reported candidates from the above plant extracts for molecular docking studies against four bacterial targets. For molecular docking studies, we retrieved all phytoconstituents or ligands from the PubChem database and bacterial target proteins from the protein data bank using PyRx 0.8-AutoDock 4.2 software. Furthermore, we used various bioinformatics and chemoinformatics tools to examine the investigated phytoconstituents physicochemical properties, toxicity, and drug-ability profiles. Out of the 30 GC-MS report-derived candidates from three plants, P5 from P. guajava, P18 from S. cumini, and P21 from P. granatum had the potent binding ability with bacterial targets. In the same way, out of the 30 reported candidates, P39, P43, and P56 from three plants, along with amikacin, showed strong binding against the same bacterial target. Both sets of candidates showed favorable physicochemical and toxicity profiles; however, all GC-MS-derived and few reported candidates exhibited negative drug-likeness. The study reveals that these crude extracts have antibacterial properties because they contain both GC-MS and existing phytoconstituents. The study starts with a crude extraction and then uses bioinformatics to choose two possible antibacterial candidates, ursolic acid and punicacortein A. This platform could be useful for finding an antibacterial agent that works specifically on a specific target. To sum up, the study encourages the isolation of more bioactive candidates from different Indian medicinal plants and uses bioinformatics tools to speed up the selection of strong leads that can speed up the process of making antibacterial drugs within limited resources.

References

Acharya, C. K., Madhu, N.R., Khan, N. S., & Guha, P. (2021). Improved Reproductive Efficacy of Phyllanthus emblica L. on Testis of Male Swiss Mice and a Pilot Study of its Potential Values. Int. J. Food. Nutr. Sci., 10(4), 7-14.

Amare, D., Ambaw, F., & Alene, K.A. (2023). Effect of integrating traditional care with modern healthcare to improve tuberculosis control programs in Ethiopia: a protocol for a cluster-randomized controlled trial. Trials., 24(1), 582. https://doi.org/10.1186/s13063-023-07559-8.

Aqil, F., & Ahmad, I. (2007). Antibacterial properties of traditionally used Indian medicinal plants. Methods Find Exp Clin Pharmacol., 29(2), 79-92. https://doi.org/10.1358/mf.2007.29.2.1075347

Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., Salamat, M.K.F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist., 11, 1645-1658. https://doi.org/10.2147/IDR.S173867

Balkrishna, A., Gupta, A.K., Gupta, A., Singh, P., Singh, P., & Tomar, M.D. (2022). Rajagopal. Antibacterial activity and mechanism of action of an Ayurveda formulation Khadirarishta. J. Herbal Med., 32, 100509.

https://doi.org/10.1016/j. hermed.2021.100509.

Banerjee, J., Biswas, S., Madhu, N.R., Karmakar, S. R. and Biswas. S. J. (2014). A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: A review. Journal of Pharmacognosy and Phytochemistry, 3(1), 207-210.

Bhattacharjee, P. (2021). Some medicinal plants with anti -fertility potential used by the tribal people of the District Cooch Behar, West Bengal, India Int. J. Exp. Res. Rev., 24, 30-39.

https://doi.org/10.52756/ijerr.2021.v24.004

Barthwal, R., & Mahar, R. (2024). Exploring the significance, extraction, and characterization of plant-derived secondary metabolites in complex mixtures. Metabolites, 14(2), 119.

https://doi.org/10.3390/metabo14020119.

Capriotti, A.L., Cannazza, G., Catani, M., Cavaliere, C., Cavazzini, A., Cerrato, A., Citti, C., Felletti, S., Montone, C.M., Piovesana, S., & Laganà, A. (2021). Recent applications of mass spectrometry for the characterization of cannabis and hemp phytocannabinoids: From targeted to untargeted analysis. J. Chromatogr. A., 1655, 462492. https://doi.org/10.1016/j.chroma.2021.462492.

Chassagne, F., Samarakoon, T., Porras, G., Lyles, J.T., Dettweiler, M., Marquez, L., Salam, A.M., Shabih, S., Farrokhi, D.R., & Quave, C.L. (2021). A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front Pharmacol., 11, 586548. https://doi.org/10.3389/fphar.2020.586548.

Darro, S., & Khan, N. (2024). Ethno Medicinal, Phyto-Chemical and Physico-chemical Characterization of Selected Endangered Medicinal Plants of Indravati National Park, Bijapur, Chhattisgarh, India. International Journal of Experimental Research and Review, 40(Spl Volume), 142-150. https://doi.org/10.52756/ijerr.2024.v40spl.011

Das, P.K., Goswami, S., Chinniah, A., Panda, N., Banerjee, S., Sahu, N.P., & Achari, B. (2007). Woodfordia fruticosa: traditional uses and recent findings. J Ethnopharmacol., 110(2), 189-99. https://doi.org/10.1016/j.jep.2006.12.029.

De, M., Sharma, L., & Acharya, C. (2023). A Comprehensive Chemical Characterization of Leaves of Five Potential Medicinal Plants in Paschim Medinipur District, W. B., India. Int. J. Exp. Res. Rev., 36, 20-36. https://doi.org/10.52756/ijerr.2023.v36.002

Dey-Ray, S., Dutta, S., Sengupta, P., Madhu, N.R., Das, N., Ray, S., Kolesarova, A., Roychoudhury, S. (2024). Elucidation of anti-inflammatory activity of a new cyclic alkaloid compound from root bark of Ziziphus nummularia (Aubrev.): in vitro, in silico and in vivo studies. Journal of Microbiology, Biotechnology and Food Sciences, 13(5), e10564. https://doi.org/10.55251/jmbfs.10564

Dubale, S., Abdissa, N., Kebebe, D., Debella, A., Zeynudin, A., & Suleman, S. (2023). Ethnomedicinal plants and associated indigenous knowledge for the treatment of different infectious diseases in Ethiopia. J. Herbal Med., 40, 100669. https://doi.org/10.1016/j.hermed.2023.100669.

Dubey, D., Patnaik, R., Ghosh, G., & Padhy, R.N. (2014). In vitro antibacterial activity, gas chromatography-mass spectrometry analysis of Woodfordia fruticosa Kurz. Leaf extract and host toxicity testing with in vitro cultured lymphocytes from human umbilical cord blood. Osong Public Health Res Perspect., 5(5), 298-312.

Frickmann, H., Hahn, A., Berlec, S., Ulrich, J., Jansson, M., Schwarz, N.G., Warnke, P., & Podbielski, A. (2019). On the etiological relevance of Escherichia coli and Staphylococcus aureus in superficial and deep infections - A hypothesis-forming, retrospective assessment. Eur J Microbiol Immunol (Bp)., 9(4), 124-130.

Gandra, S., Tseng, K.K., Arora, A., Bhowmik, B., Robinson, M.L., Panigrahi, B., Laxminarayan, R., & Klein, E.Y. (2019). The mortality burden of multidrug-resistant pathogens in India: a retrospective, observational study. Clin Infect Dis., 69(4), 563-570. https://doi.org/10.1093/cid/ciy955

GBD 2019 Antimicrobial Resistance Collaborators. (2022). Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet., 400(10369), 2221-2248.

Ghosh, S., Nahar, N., Dasgupta, D., Sarkar, B., Biswas, P., Chakraborty, R., Acharya, C.K., Jana, S.K., Madhu, N.R. (2022). Socioeconomic Disparity in Health of Rural Communities in the Himalayan Foothills: Mahananda Wildlife Sanctuary, West Bengal. Chettinad Health City Medical Journal, 11(2), 9-18.

Howden, B.P., Giulieri, S.G., Wong Fok Lung, T., Baines, S.L., Sharkey, L.K., Lee, J.Y.H., Hachani, A., Monk, I.R., & Stinear, T.P. (2023). Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol., 21(6), 380-395. https://doi.org/10.1038/s41579-023-00852-y

Jyotirmayee, B., & Mahalik, G. (2022). Traditional uses and variation in curcumin contentin varieties of curcuma–the saffron of India. Ambient Sci., 9(1), 06-12. doi:10.21276/ambi.2022.09.1.rv01.

Konappa, N., Udayashankar, A.C., Krishnamurthy, S., Pradeep, C.K., Chowdappa, S., & Jogaiah, S. (2020). GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep., 10(1), 16438. https://doi.org/10.1038/s41598-020-73442-0

Maiti, A., Madhu, N.R., & Manna, C. K. (2010). Ethnomedicine used by the tribal people of the district Purulia, W. B., India in controlling fertility : and experimental study. Pharmacologyonline. 1, 783-802.

Maiti, A., Madhu, N.R., & Manna, C. K. (2013). Natural products traditionally used by the tribal people of the Purulia district, West Bengal, India for the abortifacient purpose. International Journal of Genuine Medicine, 3(2), e14, 1-4.

Mazzei, R., Leonti, M., Spadafora, S., Patitucci, A., & Tagarelli, G. (2020). A review of the antimicrobial potential of herbal drugs used in popular Italian medicine (1850s-1950s) to treat bacterial skin diseases. J. Ethnopharmacol., 250, 112443. https://doi.org/10.1016/j.jep.2019.112443.

Najda, A., Bains, A., Chawla, P., Kumar, A., Balant, S., Walasek-Janusz, M., Wach, D., & Kaushik, R. (2021). Assessment of anti-inflammatory and antimicrobial potential of ethanolic extract of Woodfordia fruticosa Flowers: GC-MS analysis. Molecules, 26(23), 7193. https://doi.org/10.3390/molecules26237193.

Park, Y.L., & Canaway, R. (2019). Integrating traditional and complementary medicine with national healthcare systems for universal health coverage in Asia and the Western Pacific. Health Syst Reform., 5(1), 24-31. https://doi.org/10.1080/23288604.2018.1539058.

Rahman, M.M., Soma, M.A., Sultana, N., Hossain, M.J., Sufian, M.A., Rahman, M.O., & Rashid, M.A. (2023). Exploring therapeutic potential of Woodfordia fruticosa (L.) Kurz leaf and bark focusing on antioxidant, antithrombotic, antimicrobial, anti-inflammatory, analgesic, and antidiarrheal properties. Health Sci Rep., 6(10), e1654. d https://doi.org/10.1002/hsr2.1654.

Rai, A., & Sharma, A. (2024). An Ethno-Pharmacological Study of Wound Healing Medicinal Plants Used by Traditional Healers in Dhamtari, Chhattisgarh, India. International Journal of Experimental Research and Review, 38, 194-207. https://doi.org/10.52756/ijerr.2024.v38.018

Ralte, L., Khiangte, L., Thangjam, N.M., Kumar, A., & Singh, Y.T. (2022). GC-MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci Rep., 12(1), 3395. https://doi.org/10.1038/s41598-022-07320-2

Ranjbar, R., & Alam, M. (2022). Antimicrobial Resistance Collaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Evid Based Nurs., Ebnurs-2022-103540. https://doi.org/10.1136/ebnurs-2022-103540

Sahoo, A., Jena, A.K., & Panda, M. (2022a). Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. J. Ethnopharmacol., 298, 115591. https://doi.org/10.1016/j.jep.2022.115591.

Sahoo, A., Swain, S.S., Paital, B., & Panda, M. (2022c). Combinatorial approach of vitamin C derivative and anti-HIV drug-darunavir against SARS-CoV-2. Front Biosci (Landmark Ed)., 27(1), 10. https://doi.org/10.31083/j.fbl2701010.

Sahoo, A., Swain, S.S., Panda, S.K., Hussain, T., Panda, M., & Rodrigues, C.F. (2022b). In silico identification of potential insect peptides against biofilm-producing Staphylococcus aureus. Chem. Biodivers., 19(10), e202200494. https://doi.org/10.1002/cbdv.202200494

Sarkar, B., Biswas, P., Acharya, C.K., Ghorai, S.K., Nahar, N., Jana, S.K., Ghosh, S., Sarkar, D., Behera, B., & Madhu, N.R. (2021). Knowledge of Traditional Indian Medicinal Plants for the Management of COPD. Chettinad Health City Medical Journal.10(4), 184 – 189. https://doi.org/10.36503/chcmj10(4)-05

Sarkar, B., Kotal, H.N., Giri, C.K., Mandal, A., Hudait, N., Madhu, N.R., Saha, S., Basak, S.K., Sengupta, J., & Ray, K. (2024). Detection of a bibenzyl core scaffold in 28 common mangrove and associate species of the Indian Sundarbans: potential signature molecule for mangrove salinity stress acclimation. Front. Plant Sci., 14, 1291805.

Swain, S.S., & Hussain, T. (2022). Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-effective platform for natural product-based drug discovery. Chem Biodivers., 19(11), e202200267. https://doi.org/10.1002/cbdv.202200267.

Swain, S.S., Hussain, T., & Pati, S. (2021a). Drug-lead anti-tuberculosis phytochemicals: A systematic review. Curr Top Med Chem., 21(20), 1832-1868.

Swain, S.S., & Padhy, R.N. (2015). In vitro antibacterial efficacy of plants used by an Indian aborigine tribe against pathogenic bacteria isolated from clinical samples. J Taibah Univ Med Sci., 10, 379-390. https://doi.org/10.1016/j.bj.2020.12.002

Swain, S.S., Panda, S.K., & Luyten, W. (2021b). Phytochemicals against SARS-CoV as potential drug leads. Biomed J., 44(1), 74-85.

Swain, S.S., Singh, S.R., Sahoo, A., Hussain, T., & Pati, S. (2022). Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment. J Biomol Struct Dyn., 40(14), 6463-6476. https://doi.org/10.1080/07391102.2021.1885495

Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms., 9(10), 2041. https://doi.org/10.3390/microorganisms9102041.

WHO-2023a: Antimicrobial resistance. Assessed on https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

WHO-2023b. The First WHO Traditional Medicine Global Summit. Accessed on https://www.who.int/news-room/events/detail/2023/08/17/default-calendar/the-first-who-traditional-medicine-global-summit.

Yuan, H., Ma, Q., Ye, L., Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559. https://doi.org/10.3390/molecules21050559.

Published

2024-08-30

How to Cite

Chakrabarty, S., Swain, S. S., & Mishra, M. P. (2024). Quantitative Phytochemical Investigation, Antibacterial Potency, and Drug-ability Assessment of Three Indian Medicinal Plants Leaf Extracts Using Bioinformatics Tools. International Journal of Experimental Research and Review, 42, 351–364. https://doi.org/10.52756/ijerr.2024.v42.031

Issue

Section

Articles