Fusion of Wavelet Features and Gabor Features for SVM-based Iris Verification
DOI:
https://doi.org/10.52756/ijerr.2024.v43spl.010Keywords:
Biometrics, DWT multiple wavelets, Gabor filter, Iris feature extraction, Iris verification, SVM with RBFAbstract
Iris verification now become increasingly prominent in biometric-based person verification systems. It has gained a significant role in biometric systems due to its stability, high uniqueness, contactless and non-invasive properties. Iris has more inherent distinctive features than other biometrics. Feature extraction of iris plays a crucial role in this system for accurate person verification. Using the feature extraction process, unique iris features like textural patterns, crypts, and furrows of iris are extracted. In our study, we did a fusion of Discrete Wavelet Transform (DWT) features with multiple wavelet bases (db4, haar, coif3, and sym4) and Gabor features, which contain a good amount of textural and localized information. Fusion here indicates the concatenation of the extracted features using the above techniques. In this work, we studied this method on the full iris only so that a maximum number of features can be extracted. This combined approach yielded a significant 112 number of features. The extracted features are then verified using a support vector machine (SVM) classifier based on radial basis function (RBF) kernel with training vs testing split ratios of 8:2, 6:4, 4:6 and 2:8. In this study, we achieved the highest overall verification accuracy of 95.9% with training vs testing split ratio of 8:2. For other training vs testing split ratios of 6:4, 4:6 and 2:8 we achieved overall verification accuracies of 91.4%, 93.2% and 91.2% respectively. We got an overall verification accuracy of 92.9%, considering training vs testing ratios of 8:2, 6:4, 4:6 and 2:8.
References
Aboufadel, E., & Schlicker, S. (2003). Wavelets, Introduction. In Elsevier eBooks, pp. 773–788. https://doi.org/10.1016/b0-12-227410-5/00823-1 DOI: https://doi.org/10.1016/B0-12-227410-5/00823-1
Bahri, S., Awalushaumi, L., & Susanto, M. (2018). The Approximation of Nonlinear Function using Daubechies and Symlets Wavelets. In Proceedings of the International Conference on Mathematics and Islam (ICMIs 2018), pp. 300-306. https://doi.org/10.5220/0008521103000306 DOI: https://doi.org/10.5220/0008521103000306
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/tpami.1986.4767851 DOI: https://doi.org/10.1109/TPAMI.1986.4767851
Chen, H., & Bakshi, B. (2009). Linear approaches for nonlinear modeling. In Elsevier eBooks, pp. 453–462. https://doi.org/10.1016/b978-044452701-1.00060-0 DOI: https://doi.org/10.1016/B978-044452701-1.00060-0
Chen, Y., Zhao, Y., Zhao, B., & Wei, H. (2023). Research on Iris feature extraction and recognition technology based on deep learning. International Journal of Advanced Network Monitoring and Controls, 8(3), 35–45. https://doi.org/10.2478/ijanmc-2023-0064 DOI: https://doi.org/10.2478/ijanmc-2023-0064
Chetry, B. P., & Kar, B. (2024). Kruskal Wallis and mRMR Feature Selection based Online Signature Verification System using Multiple SVM and KNN. International Journal of Experimental Research and Review, 42, 298–311. https://doi.org/10.52756/ijerr.2024.v42.026 DOI: https://doi.org/10.52756/ijerr.2024.v42.026
Chua, J., Thakku, S. G., Tun, T. A., Nongpiur, M. E., Tan, M. C. L., Girard, M. J., Wong, T. Y., Quah, J. H. M., Aung, T., & Cheng, C. (2016). Iris crypts influence dynamic changes of iris volume. Ophthalmology, 123(10), 2077–2084. https://doi.org/10.1016/j.ophtha.2016.06.034 DOI: https://doi.org/10.1016/j.ophtha.2016.06.034
Cohen, David., Lee, Theodore., & Sklar, David. (2005). Precalculus?: a problems-oriented approach. https://books.google.com/books/about/Precalculus_A_Problems_Oriented_Approach.html?id=_6ukev29gmgC
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/bf00994018 DOI: https://doi.org/10.1007/BF00994018
Das, S., & Kar, B. (2022). Verification of Iris with Consideration of Constraints. In Sharma, H., Shrivastava, V., Bharti, K. K. & Wang, L. (Eds.), Proceedings of the International Conference on Communication and Intelligent Systems (ICCIS 2021), Lecture Notes in Networks and Systems, 461, 95–106. https://doi.org/10.1007/978-981-19-2130-8_8 DOI: https://doi.org/10.1007/978-981-19-2130-8_8
Daubechies, I. (1992). Ten lectures on wavelets, Society for Industrial and Applied Mathematics, 3600 University City Science Center Philadelphia, PA, USA, ISBN:978-0-89871-274-2
Daugman, J. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1148–1161. https://doi.org/10.1109/34.244676 DOI: https://doi.org/10.1109/34.244676
Dhage, S. S., Hegde, S. S., Manikantan, K., & Ramachandran, S. (2015). DWT-based feature extraction and Radon Transform based contrast enhancement for improved iris recognition. Procedia Computer Science, 45, 256–265. https://doi.org/10.1016/j.procs.2015.03.135 DOI: https://doi.org/10.1016/j.procs.2015.03.135
Dixit, A., Gupta, A., Chaplot, N., & Bharti, V. (2024). Emoji Support Predictive Mental Health Assessment Using Machine Learning: Unveiling Personalized Intervention Avenues. International Journal of Experimental Research and Review, 42, 228-240. https://doi.org/10.52756/ijerr.2024.v42.020 DOI: https://doi.org/10.52756/ijerr.2024.v42.020
Edwards, M., Cha, D., Krithika, S., Johnson, M., & Parra, E. J. (2016). Analysis of iris surface features in populations of diverse ancestry. Royal Society Open Science, 3(1), 150424. https://doi.org/10.1098/rsos.150424 DOI: https://doi.org/10.1098/rsos.150424
El-Sayed, M. A., & Abdel-Latif, M. A. (2022). Iris recognition approach for identity verification with DWT and multiclass SVM. PeerJ Computer Science, 8, e919. https://doi.org/10.7717/peerj-cs.919 DOI: https://doi.org/10.7717/peerj-cs.919
El-Sofany, H., Bouallegue, B., & El-Latif, Y. M. A. (2024). A proposed biometric authentication hybrid approach using Iris recognition for improving cloud security. Heliyon, 10(16), e36390. https://doi.org/10.1016/j.heliyon.2024.e36390 DOI: https://doi.org/10.1016/j.heliyon.2024.e36390
Fathee, H., & Sahmoud, S. (2021). Iris segmentation in uncooperative and unconstrained environments: State-of-the-art, datasets and future research directions. Digital Signal Processing, 118, 103244. https://doi.org/10.1016/j.dsp.2021.103244 DOI: https://doi.org/10.1016/j.dsp.2021.103244
Gautam, S., Ahlawat, S., & Mittal, P. (2022). Binary and Multi-class Classification of Brain Tumors using MRI Images. International Journal of Experimental Research and Review, 29, 1–9. https://doi.org/10.52756/ijerr.2022.v29.001 DOI: https://doi.org/10.52756/ijerr.2022.v29.001
Hariharan, G., & Kannan, K. (2014). Review of wavelet methods for the solution of reaction–diffusion problems in science and engineering. Applied Mathematical Modelling, 38(3), 799–813. https://doi.org/10.1016/j.apm.2013.08.003 DOI: https://doi.org/10.1016/j.apm.2013.08.003
Hosseinzadeh, M. (2020). Robust control applications in biomedical engineering: Control of depth of hypnosis. In Elsevier eBooks, pp. 89–125. https://doi.org/10.1016/b978-0-12-817461-6.00004-4 DOI: https://doi.org/10.1016/B978-0-12-817461-6.00004-4
Illingworth, J., & Kittler, J. (1987). The adaptive Hough transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5), 690–698. https://doi.org/10.1109/tpami.1987.4767964 DOI: https://doi.org/10.1109/TPAMI.1987.4767964
Jamaludin, S., Zainal, N., & Zaki, W. M. D. W. (2020). Deblurring of noisy iris images in iris recognition. Bulletin of Electrical Engineering and Informatics, 10(1), 156–159. https://doi.org/10.11591/eei.v10i1.2467 DOI: https://doi.org/10.11591/eei.v10i1.2467
Jensen, A., & La Cour-Harbo, A. (2001). Ripples in Mathematics. In Springer eBooks. https://doi.org/10.1007/978-3-642-56702-5 DOI: https://doi.org/10.1007/978-3-642-56702-5
Kumar, K. K., Bharadwaj, R. M., & Sujana, S (2021). Iris recognition based on Gabor and Deep Convolutional Networks. In Proceedings of the International Conference on Communication, Control and Information Sciences (ICCISc 2021). https://doi.org/10.1109/iccisc52257.2021.9484905 DOI: https://doi.org/10.1109/ICCISc52257.2021.9484905
Larsson, M., Duffy, D. L., Zhu, G., Liu, J. Z., Macgregor, S., McRae, A. F., Wright, M. J., Sturm, R. A., Mackey, D. A., Montgomery, G. W., Martin, N. G., & Medland, S. E. (2011). GWAS Findings for Human Iris Patterns: Associations with Variants in Genes that Influence Normal Neuronal Pattern Development. The American Journal of Human Genetics, 89(2), 334–343. https://doi.org/10.1016/j.ajhg.2011.07.011 DOI: https://doi.org/10.1016/j.ajhg.2011.07.011
Lindfield, G., & Penny, J. (2018). Analyzing data using discrete transforms. In Elsevier eBooks (pp. 383–431). https://doi.org/10.1016/b978-0-12-812256-3.00017-8 DOI: https://doi.org/10.1016/B978-0-12-812256-3.00017-8
Madanan, M., Gunasekaran, S. S., & Mahmoud, M. A. (2023). A Comparative Analysis of Machine Learning and Deep Learning Algorithms for Image Classification. In Proceedings of the International Conference on Contemporary Computing and Informatics, IC3I 2023, 2436–2439. https://doi.org/10.1109/IC3I59117.2023.10398030 DOI: https://doi.org/10.1109/IC3I59117.2023.10398030
Nazmdeh, V., Mortazavi, S., Tajeddin, D., Nazmdeh, H., & Asem, M. M. (2019). Iris recognition; From classic to modern approaches. In Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019, pp. 981–988. https://doi.org/10.1109/CCWC.2019.8666516
Proença, H., & Alexandre, L. A. (2005). UBIRIS: A Noisy Iris Image database. In Lecture Notes in Computer Science (pp. 970–977). https://doi.org/10.1007/11553595_119 DOI: https://doi.org/10.1007/11553595_119
Rittig, M., Lütjen-Drecoll, E., Rauterberg, J., Jander, R., & Mollenhauer, J. (1990). Type-VI collagen in the human iris and ciliary body. Cell and Tissue Research, 259(2), 305–312. https://doi.org/10.1007/BF00318453 DOI: https://doi.org/10.1007/BF00318453
Roy, D. A., & Soni, U. S. (2016). IRIS segmentation using Daughman’s method. In Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, pp. 2668–2676. https://doi.org/10.1109/ICEEOT.2016.7755178 DOI: https://doi.org/10.1109/ICEEOT.2016.7755178
Sesmero, M. P., Iglesias, J. A., Magán, E., Ledezma, A., & Sanchis, A. (2021). Impact of the learners diversity and combination method on the generation of heterogeneous classifier ensembles. Applied Soft Computing, 111, 107689. https://doi.org/10.1016/j.asoc.2021.107689 DOI: https://doi.org/10.1016/j.asoc.2021.107689
Shen, B., Xu, Y., Lu, G., & Zhang, D. (2007). Detecting iris lacunae based on Gaussian filter. In Proceedings of the 3rd International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIHMSP 2007, pp. 233–236. https://doi.org/10.1109/IIHMSP.2007.4457533 DOI: https://doi.org/10.1109/IIHMSP.2007.4457533
Shen, L., Bai, L., & Fairhurst, M. (2006). Gabor wavelets and General Discriminant Analysis for face identification and verification. Image and Vision Computing, 25(5), 553–563. https://doi.org/10.1016/j.imavis.2006.05.002 DOI: https://doi.org/10.1016/j.imavis.2006.05.002
Thakkar, S., & Patel, C. (2020). Iris Recognition Supported best Gabor Filters and Deep learning CNN Options. In Proceedings of the International Conference on Industry 4.0 Technology, I4Tech 2020, pp. 167–170. https://doi.org/10.1109/I4TECH48345.2020.9102681 DOI: https://doi.org/10.1109/I4Tech48345.2020.9102681
Treuting, P. M., Wong, R., Tu, D. C., & Phan, I. (2012). Special Senses. In Elsevier eBooks (pp. 395–418). https://doi.org/10.1016/b978-0-12-381361-9.00021-4 DOI: https://doi.org/10.1016/B978-0-12-381361-9.00021-4
Vacca, J. (2007). Biometric Technologies and Verification Systems. Elsevier, eBook ISBN: 9780080488394.
Vishwakarma, N., & Patel, V. (2019). Biometric iris recognition using sobel edge detection for secured authentication. In Proceedings of the 2nd International Conference on Intelligent Communication and Computational Techniques, ICCT 2019, pp. 119–123. https://doi.org/10.1109/ICCT46177.2019.8969040 DOI: https://doi.org/10.1109/ICCT46177.2019.8969040
Wei, D., Rajashekar, U., & Bovik, A. C. (2005). Wavelet denoising for image enhancement. In Elsevier eBooks (pp. 157–165). https://doi.org/10.1016/b978-012119792-6/50073-5 DOI: https://doi.org/10.1016/B978-012119792-6/50073-5
Xu, W., Liang, Y., Chen, W., & Wang, F. (2019). Recent advances of stretched Gaussian distribution underlying Hausdorff fractal distance and its applications in fitting stretched Gaussian noise. Physica a Statistical Mechanics and Its Applications, 539, 122996. https://doi.org/10.1016/j.physa.2019.122996 DOI: https://doi.org/10.1016/j.physa.2019.122996
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.