Performance Analysis of KNN, Naïve Bayes, and Extreme Learning Machine Techniques on EEG Signals for Detection of Parkinson's Disease
DOI:
https://doi.org/10.52756/ijerr.2024.v43spl.003Keywords:
EEG classification, ELM, KNN, Naïve Bayes, Neurodegenerative disorder, Parkinson’s disease, statistical featuresAbstract
The application of bio-potentials for diagnosing neurological disorders has become highly effective nowadays. This work focuses on using Electroencephalogram (EEG) to detect Parkinson's disease (PD), a significant neurological disorder. PD is considered the second most common neurological disorder in the world. Being degenerative in nature, it affects the patients progressively. The progression of the severity of this disease can be restricted by a certain limit if its symptoms can be well-treated on time. This work presents a relative analysis of the performances of three machine learning (ML) techniques in detecting PD. These are K-nearest Neighbor (KNN), Naïve Bayes and Extreme Learning Machine (ELM) techniques. Statistical-based features are evaluated from the EEG data signals of normal as well as persons with PD after preprocessing. The features evaluated are then classified using the three techniques. The results of the classifiers are evaluated with the help of some performance parameters such as accuracy, precision, sensitivity, specificity and F1 score. Based on the values of these parameters, the performances of all these techniques are compared. The comparison shows that ELM performs the best, with an accuracy of 98.84% in detecting PD. The reported methodology holds significant clinical relevance. It can offer an early, non-invasive, and objective method for diagnosing, tracking, and managing PD.
References
Alturki, F. A., AlSharabi, K., Abdurraqeeb, A. M., & Aljalal, M. (2020). EEG signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques. Sensors, 20(9), 2505. https://doi.org/10.3390/s20092505. DOI: https://doi.org/10.3390/s20092505
Awan, U. I., Rajput, U. H., Syed, G., Iqbal, R., Sabat, I., & Mansoor, M. (2016). Effective Classification of EEG Signals Using K-Nearest Neighbor Algorithm. In Proceedings of the International Conference on Frontiers of Information Technology (FIT, 2016), Islamabad, Pakistan. pp. 120-1240. https://doi.org/10.1109/FIT.2016.030. DOI: https://doi.org/10.1109/FIT.2016.030
Bablani, A., Edla, D. R., & Dodia, S. (2018). Classification of EEG Data using k-Nearest Neighbor approach for Concealed Information Test. Procedia Computer Science, 143, 242-249. https://doi.org/10.1016/j.procs.2018.10.392. DOI: https://doi.org/10.1016/j.procs.2018.10.392
Beitz, J. M. (2014). Parkinson's disease: a review. Front Biosci (Schol Ed), 6(1), 65-74. https://doi.org/ 10.2741/s415. DOI: https://doi.org/10.2741/S415
Chetry, B. P., & Kar, B. (2024). Kruskal Wallis and mRMR Feature Selection based Online Signature Verification System using Multiple SVM and KNN. International Journal of Experimental Research and Review, 42, 298–311. https://doi.org/10.52756/ijerr.2024.v42.026 DOI: https://doi.org/10.52756/ijerr.2024.v42.026
Choudhry, M. S., Kapoor, R., Abhishek, Gupta A., & Bharat, B. (2016). A survey on different discrete wavelet transforms and thresholding techniques for EEG denoising. In Proceedings of the International Conference on Computing, Communication and Automation (ICCCA, 2016), Greater Noida, India. pp. 1048-1053. https://doi.org/10.1109/CCAA.2016.7813897. DOI: https://doi.org/10.1109/CCAA.2016.7813897
Dautov, Ç. P., & Özerdem, M. S. (2018). Wavelet transform and signal denoising using Wavelet method. In Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU, 2018), Izmir, Turkey. pp. 1-4. https://doi.org/10.1109/SIU.2018.8404418. DOI: https://doi.org/10.1109/SIU.2018.8404418
Ding, S., Xu, X., & Nie, R. (2013). Extreme learning machine and its applications. Neural Computing and Applications, 25(3–4), 549–556. https://doi.org/10.1007/s00521-013-1522-8 DOI: https://doi.org/10.1007/s00521-013-1522-8
Gopika, G. K., Sinha, N. & Babu, D. J. (2016). Statistical Feature Analysis for EEG Baseline Classification: Eyes Open vs Eyes Closed. In Proceedings of the IEEE Region 10 Conference (TENCON, 2016), Singapore. pp. 2466-2469.
https://doi.org/10.1109/TENCON.2016.7848476. DOI: https://doi.org/10.1109/TENCON.2016.7848476
Govindu, A., & Palwe, S. (2023). Early detection of Parkinson's disease using machine learning. Procedia Computer Science, 218, 249-261. https://doi.org/10.1016/j.procs.2023.01.007. DOI: https://doi.org/10.1016/j.procs.2023.01.007
Haloi, R., Chanda, D., Hazarika, J., & Barman, A. K. (2023). Statistical feature-based EEG signals classification using ANN and SVM classifiers for Parkinson’s disease detection. International Journal of Experimental Research and Review, 31(Spl Volume), 141–149. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.014 DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.014
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In Proceedings of the IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary. 2004, 985-990. https://doi.org/10.1109/IJCNN.2004.1380068. DOI: https://doi.org/10.1109/IJCNN.2004.1380068
Huang, G., Zhu, Q., & Siew, C. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126 DOI: https://doi.org/10.1016/j.neucom.2005.12.126
Jose, J. P., Sundaram, M., & Jaffino, G. (2020). FPGA Implementation of Epileptic Seizure Detection Using ELM Classifier. In Proceedings of the Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII, 2020), Chennai, India. pp. 1-5. https://doi.org/10.1109/ICBSII49132.2020.9167598. DOI: https://doi.org/10.1109/ICBSII49132.2020.9167598
Madhu, N.R., Biswas, G., Paul, S., Adhikari, S., Sarkar, B., Rafeeq, M.M., & Umair, M. (2024). Challenges and Future Opportunities in Rare Genetic Disorders: A Comprehensive Review. In: Umair, M., Rafeeq, M., Alam, Q. (eds) Rare Genetic Disorders. Springer, Singapore. pp. 251-275. ISBN: 978-981-99-9323-9. https://doi.org/10.1007/978-981-99-9323-9_9 DOI: https://doi.org/10.1007/978-981-99-9323-9_9
Maitin, A. M., Muñoz, J. P. R., & García-Tejedor, Á. J. (2022). Survey of Machine learning techniques in the analysis of EEG signals for Parkinson’s Disease: A Systematic Review. Applied Sciences, 12(14), 6967. https://doi.org/10.3390/app12146967 DOI: https://doi.org/10.3390/app12146967
Malini, A. S., & Vimala, V. (2016). An epileptic seizure classifier using EEG signal. In Proceedings of the International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE, 2016), Kovilpatti, India. pp. 1-4. https://doi.org/10.1109/ICCTIDE.2016.7725334. DOI: https://doi.org/10.1109/ICCTIDE.2016.7725334
Mawalid, M. A., Khoirunnisa, A. Z., Purnomo, M. H., & Wibawa, A. D. (2018). Classification of EEG Signal for Detecting Cybersickness through Time Domain Feature Extraction using NaÏve Bayes. In Proceedings of the International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM, 2018), Surabaya, Indonesia. pp. 29-34. https://doi.org/10.1109/CENIM.2018.8711320. DOI: https://doi.org/10.1109/CENIM.2018.8711320
Murugappan, M., Alshuaib, W.B., Bourisly, A., Sruthi, S., Khairunizam, W., Shalini, B., & Yean, W. (2020). Emotion Classification in Parkinson's Disease EEG using RQA and ELM. In Proceedings of the 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA, 2020), Langkawi, Malaysia. pp. 290-295. https://doi.org/10.1109/CSPA48992.2020.9068709. DOI: https://doi.org/10.1109/CSPA48992.2020.9068709
Narayan, Y. (2024). Human Motor Imagery based EEG Signals Classification using KNN classifier. In Proceedings of the IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI, 2024), Gwalior, India. pp. 1-4. https://doi.org/10.1109/IATMSI60426.2024.10502808. DOI: https://doi.org/10.1109/IATMSI60426.2024.10502808
Oktavia, N. Y., Wibawa, A. D., Pane, E. S., & Purnomo, M. H. (2019). Human Emotion Classification Based on EEG Signals Using Naïve Bayes Method. In Proceedings of the International Seminar on Application for Technology of Information and Communication (iSemantic, 2019), Semarang, Indonesia. pp. 319-324. https://doi.org/10.1109/ISEMANTIC.2019.8884224. DOI: https://doi.org/10.1109/ISEMANTIC.2019.8884224
Ouhmida, A., Raihani, A., Cherradi, B., & Lamalem, Y. (2022). Parkinson's disease classification using machine learning algorithms: performance analysis and comparison. In Proceedings of the 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET, 2022), Meknes, Morocco. pp. 1-6. https://doi.org/10.1109/IRASET52964.2022.9738264. DOI: https://doi.org/10.1109/IRASET52964.2022.9738264
Priyanka, S., Dema D., & Jayanthi, T. (2017). Feature selection and classification of Epilepsy from EEG signal. In Proceedings of the International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS, 2017), Chennai, India. pp. 2404-2406. https://doi.org/ 10.1109/ICECDS.2017.8389880. DOI: https://doi.org/10.1109/ICECDS.2017.8389880
Rahmawati, D., Umy Chasanah, N. R., & Sarno, R. (2017). Classify epilepsy and normal Electroencephalogram (EEG) signal using wavelet transform and K-nearest neighbor. In Proceedings of the 3rd International Conference on Science in Information Technology (ICSITech, 2017), Bandung, Indonesia. pp. 110-114p. https://doi.org/ 10.1109/ICSITech.2017.8257094. DOI: https://doi.org/10.1109/ICSITech.2017.8257094
Roy, P., Ghosh, D., Sanyal, R., Madhu, N.R., Dey, A. (2024). The Controversy Surrounding Drugs Against Neurodegenerative Disorders: Benefit or Harm? In: Pathak, S., Banerjee, A. (eds) Neuroprotective Effects of Phytochemicals in Brain Ageing. Springer, Singapore. pp. 373-386. https://doi.org/10.1007/978-981-99-7269-2_17 DOI: https://doi.org/10.1007/978-981-99-7269-2_17
Sharbrough, F., Chatrian, G. E., Lesser, R., Luders, H., Nuwer, M., & Picton, T. W. (1991). American Electroencephalographic Society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 8(2), 200-202. https://doi.org/10.1097/00004691-199104000-00007 DOI: https://doi.org/10.1097/00004691-199104000-00007
Wei, C., Qin, Y., Liu, J., Jiang L., & Che, Y. (2023). Automatic Schizophrenia Detection from Scalp EEG Using CNN with Wide Convolutional Kernel and ELM. In Proceedings of the Asia Symposium on Image Processing (ASIP, 2023), Tianjin, China. pp. 62-66. https://doi.org/10.1109/ASIP58895.2023.00018. DOI: https://doi.org/10.1109/ASIP58895.2023.00018
Yoshida, T., Masani, K., Zabjek, K., Popovic, M. R., & Chen, R. (2018). Dynamic cortical participation during bilateral, cyclical ankle movements: Effects of Parkinson’s disease. PLoS ONE, 13(4), e0196177. https://doi.org/10.1371/journal.pone.0196177 DOI: https://doi.org/10.1371/journal.pone.0196177
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.