Machine Learning-Driven Assessment and Security Enhancement for Electronic Health Record Systems

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v43spl.012

Keywords:

Healthcare, Electronic Health Record, Machine Learning, Blockchain, Cloud Computing, Security, Privacy

Abstract

The digitalized patient-centric system, the Electronic Health Record (EHR), is a platform where comprehensive health information is stored, managed, and accessed electronically. The primary findings of this study aim to secure sensitive patient data and increase overall system resilience by demonstrating that machine learning can evaluate vulnerabilities and improve the security of Electronic Health Record (EHR) systems. This research examines the prospects of incorporating machine learning-driven assessment tools and safety improvements in EHRs to enhance data protection in the healthcare industry.  The proposed method utilizes the implementation of machine learning classifiers, specifically the XGBoost and LightGBM models. These classifiers are employed to enhance various aspects of the system, such as data protection and security, within the framework of EHRs. The study emphasizes the efficiency of these machine learning classifiers in ensuring that EHR systems are secure enough to deal with any problem that may occur due to threats posed by external factors or hackers. The findings reveal that the XGBoost model always has outstanding performance, with a near-perfect Receiver Operating Characteristic Curve (ROC) having an AUC equal to 1.00, indicating close to perfect accuracy in distinguishing positive from negative cases. Similarly, LightGBM has a perfect ROC curve as well. Therefore, its performance would be considered flawless. Consequently, future developments could lead to sophisticated machine learning models besides those that have already been developed. Improving data storage through encryption and building safer communication protocols should also be considered to make these systems withstand new security problems. Thus, this study contributes to the existing literature on applying technology to safeguard vulnerable medical records while fostering a safe and efficient healthcare ecosystem.

References

Ahmadi, M., & Aslani, N. (2018). Capabilities and advantages of cloud computing in the implementation of electronic health Record. Acta Informatica Medica, 26(1), 24. https://doi.org/10.5455/aim.2018.26.24-28 DOI: https://doi.org/10.5455/aim.2018.26.24-28

Alam, M. U., & Rahmani, R. (2023). FedSepsis: A Federated Multi-Modal Deep Learning-Based Internet of Medical Things Application for Early Detection of Sepsis from Electronic Health Records Using Raspberry Pi and Jetson Nano Devices. Sensors, 23(2), 970. https://doi.org/10.3390/s23020970 DOI: https://doi.org/10.3390/s23020970

Bhattacharya, P., Tanwar, S., Bodkhe, U., Tyagi, S., & Kumar, N. (2021). BINDAAS: Blockchain-Based Deep-Learning as-a-Service in Healthcare 4.0 Applications. IEEE Transactions on Network Science and Engineering, 8(2), 1242–1255. https://doi.org/10.1109/tnse.2019.2961932 DOI: https://doi.org/10.1109/TNSE.2019.2961932

Chami, S., & Tavakolian, K. (2019). Comparative study of Light-GBM and LSTM for early prediction of sepsis from clinical data. Computing in Cardiology, 46, 1-4. https://doi.org/10.22489/cinc.2019.367 DOI: https://doi.org/10.22489/CinC.2019.367

Chen, I. Y., Pierson, E., Rose, S., Joshi, S., Ferryman, K., & Ghassemi, M. (2021). Ethical machine learning in healthcare. Annual Review of Biomedical Data Science, 4(1), 123–144. https://doi.org/10.1146/annurev-biodatasci-092820-114757 DOI: https://doi.org/10.1146/annurev-biodatasci-092820-114757

Chenthara, S., Ahmed, K., Wang, H., & Whittaker, F. (2019). Security and Privacy-Preserving challenges of e-Health solutions in cloud Computing. IEEE Access, 7, 74361–74382. https://doi.org/10.1109/access.2019.2919982 DOI: https://doi.org/10.1109/ACCESS.2019.2919982

Corbin, C.K., Sung, L., Chattopadhyay, A., Noshad, M., Chang, A., Deresinksi, S., Baiocchi, M., & Chen, J. H. (2022). Personalized antibiograms for machine learning driven antibiotic selection. Commun. Med., 2, 38. https://doi.org/10.1038/s43856-022-00094-8 DOI: https://doi.org/10.1038/s43856-022-00094-8

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2018). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z DOI: https://doi.org/10.1038/s41591-018-0316-z

Gabriel, S. J., & Sengottuvelan, P. (2021). An Enhanced Blockchain Technology with AES Encryption Security System for Healthcare System. 2nd International Conference on Smart Electronics and Communication (ICOSEC), 2021, 400-405. https://doi.org/10.1109/icosec51865.2021.9591956 DOI: https://doi.org/10.1109/ICOSEC51865.2021.9591956

Hasan, M. K., Alam, M. A., Das, D., Hossain, E., & Hasan, M. (2020). Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access, 8, 76516–76531. https://doi.org/10.1109/access.2020.2989857 DOI: https://doi.org/10.1109/ACCESS.2020.2989857

Hathaliya, J. J., & Tanwar, S. (2020). An exhaustive survey on security and privacy issues in Healthcare 4.0. Computer Communications, 153, 311–335. https://doi.org/10.1016/j.comcom.2020.02.018 DOI: https://doi.org/10.1016/j.comcom.2020.02.018

Himabindu, D. D., Pranalini, B., Kumar, M., Neethika, A., Sree N, B., C, M., B, H., & S, K. (2024). Deep CNN-based Classification of Brain MRI Images for Alzheimer’s Disease Diagnosis. International Journal of Experimental Research and Review, 41(Spl Vol), 43-54. https://doi.org/10.52756/ijerr.2024.v41spl.004 DOI: https://doi.org/10.52756/ijerr.2024.v41spl.004

Hirano, H., Koga, K., & Takemoto, K. (2020). Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks. PLoS ONE, 15(12), e0243963. https://doi.org/10.1371/journal.pone.0243963 DOI: https://doi.org/10.1371/journal.pone.0243963

Hou, N., Li, M., He, L., Xi, B., Wang, L., Zhang, R., Yu, Y., Sun, X., Pan, Z., & Wang, K. (2020). Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J. Transl. Med., 18, 462. https://doi.org/10.1186/s12967-020-02620-5 DOI: https://doi.org/10.1186/s12967-020-02620-5

Huang, A. A., & Huang, S. Y. (2023). Dendrogram of transparent feature importance machine learning statistics to classify associations for heart failure: A reanalysis of a retrospective cohort study of the Medical Information Mart for Intensive Care III (MIMIC-III) database. PLoS ONE, 18(7), e0288819. https://doi.org/10.1371/journal.pone.0288819 DOI: https://doi.org/10.1371/journal.pone.0288819

Huang, X. (2019). Blockchain in Healthcare: a Patient-Centered model. Biomedical Journal of Scientific & Technical Research, 20(3). https://doi.org/10.26717/bjstr.2019.20.003448 DOI: https://doi.org/10.26717/BJSTR.2019.20.003448

Keerthana, B., Vamsinath, J., Kumari, C., Appaji, S. V., Rani, P. P., & Chilukuri, S. (2024). Machine Learning Techniques for Medicinal Leaf Prediction and Disease Identification. International Journal of Experimental Research and Review, 42, 320-327. https://doi.org/10.52756/ijerr.2024.v42.028. DOI: https://doi.org/10.52756/ijerr.2024.v42.028

Kumar, S. R., Gayathri, N., Muthuramalingam, S., Balamurugan, B., Ramesh, C., & Nallakaruppan, M. (2019). Medical big data mining and processing in e-Healthcare. In Elsevier eBooks. pp. 323–339. https://doi.org/10.1016/b978-0-12-817356-5.00016-4 DOI: https://doi.org/10.1016/B978-0-12-817356-5.00016-4

Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers & Electrical Engineering, 72, 1–13. https://doi.org/10.1016/j.compeleceng.2018.08.015 DOI: https://doi.org/10.1016/j.compeleceng.2018.08.015

Lee, D. (2019). Effects of key value co-creation elements in the healthcare system: focusing on technology applications. Serv Bus., 13, 389–417. https://doi.org/10.1007/s11628-018-00388-9 DOI: https://doi.org/10.1007/s11628-018-00388-9

Lee, D. H., &. S. N. (2021). Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and challenges. ideas.repec.org. 18(1), 271. https://ideas.repec.org/a/gam/jijerp/v18y2021i1p271-d473475.html DOI: https://doi.org/10.3390/ijerph18010271

Locke, S., Bashall, A., Al-Adely, S., Moore, J., Wilson, A., & Kitchen, G. B. (2021). Natural language processing in medicine: A review. Trends in Anaesthesia and Critical Care, 38, 4–9. https://doi.org/10.1016/j.tacc.2021.02.007 DOI: https://doi.org/10.1016/j.tacc.2021.02.007

Mandair, D., Tiwari, P., Simon, S., Colborn, K., & Rosenberg, M. (2020). Prediction of incident myocardial infarction using machine learning applied to harmonized electronic health record data. BMC Med. Inform. Decis. Mak., 20, 252 (2020). https://doi.org/10.1186/s12911-020-01268-x DOI: https://doi.org/10.1186/s12911-020-01268-x

Mayer, A.H., da Costa, C.A., & Righi, R. da R. (2020). Electronic health records in a Blockchain: A systematic review. Health Informatics Journal, 26(2), 1273-1288. https://doi.org/10.1177/1460458219866350 DOI: https://doi.org/10.1177/1460458219866350

McGhin, T., Choo, K. R., Liu, C. Z., & He, D. (2019). Blockchain in healthcare applications: Research challenges and opportunities. Journal of Network and Computer Applications, 135, 62–75. https://doi.org/10.1016/j.jnca.2019.02.027 DOI: https://doi.org/10.1016/j.jnca.2019.02.027

Mishra, V., Mishra, M., Tamrakar, A., Srikanth, T., Kumar, T., & Kumar, A. (2024). Pneumonia Detection through Deep Learning: A Comparative Exploration of Classification and Segmentation Strategies. International Journal of Experimental Research and Review, 40(Spl Volume), 41-55. https://doi.org/10.52756/ijerr.2024.v40spl.004 DOI: https://doi.org/10.52756/ijerr.2024.v40spl.004

Newaz, A. I., Sikder, A. K., Rahman, M. A., & Uluagac, A. S. (2019). HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain. pp. 389-396. https://doi.org/10.1109/snams.2019.8931716 DOI: https://doi.org/10.1109/SNAMS.2019.8931716

Osmani, V., Li, L., Danieletto, M., Glicksberg, B., Dudley, J., & Mayora, O. (2018). Processing of Electronic Health Records using Deep Learning: A review. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1804.01758 DOI: https://doi.org/10.1145/3240925.3240961

Pang, X., Forrest, C. B., Lê-Scherban, F., & Masino, A. J. (2021). Prediction of early childhood obesity with machine learning and electronic health record data. International Journal of Medical Informatics, 150, 104454. https://doi.org/10.1016/j.ijmedinf.2021.104454 DOI: https://doi.org/10.1016/j.ijmedinf.2021.104454

Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2020). Secure and Robust machine learning for healthcare: a survey. IEEE Reviews in Biomedical Engineering, 14, 156–180. https://doi.org/10.1109/rbme.2020.3013489 DOI: https://doi.org/10.1109/RBME.2020.3013489

Rao, K., Devi, J., Anuradha, Y., G, K., Kumar, M., & Rao, M. S. (2024). Enhancing Liver Disease Detection and Management with Advanced Machine Learning Models. International Journal of Experimental Research and Review, 42, 100-110. https://doi.org/10.52756/ijerr.2024.v42.009 DOI: https://doi.org/10.52756/ijerr.2024.v42.009

Romeo, L., & Frontoni, E. (2021). A Unified Hierarchical XGBoost model for classifying priorities for COVID-19 vaccination campaign. Pattern Recognition, 121, 108197. https://doi.org/10.1016/j.patcog.2021.108197 DOI: https://doi.org/10.1016/j.patcog.2021.108197

Shah, H., Rai, K., Singh, D., Gupta, S., BR, S. R., & Tripathi, R. C. (2023). Blockchain machine learning based personal health record data analysis with smart decentralization and security enhancement. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-2653352/v1 DOI: https://doi.org/10.21203/rs.3.rs-2653352/v1

Souri, A., Ghafour, M. Y., Ahmed, A. M., Safara, F., Yamini, A., & Hoseyninezhad, M. (2020). A new machine learning-based healthcare monitoring model for student’s condition diagnosis in Internet of Things environment. Soft Computing, 24(22), 17111–17121. https://doi.org/10.1007/s00500-020-05003-6 DOI: https://doi.org/10.1007/s00500-020-05003-6

Tsiklidis, E. J., Sinno, T., & Diamond, S. L. (2022). Predicting risk for trauma patients using static and dynamic information from the MIMIC III database. PLoS ONE, 17(1), e0262523. https://doi.org/10.1371/journal.pone.0262523 DOI: https://doi.org/10.1371/journal.pone.0262523

Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689 DOI: https://doi.org/10.1371/journal.pmed.1002689

Vignesh, R., Suja Cherukullapurath Mana, B. Keerthi Samhitha, and Jithina Jose. Integrating The Hospital Management System Based on Cloud Environment Using Hmac Algorithm. International Journal of Computer Engineering And Technology (IJCET), 8(4), 2017. https://iaeme.com/Home/article_id/IJCET_08_04_009

Vos, J.F.J., Boonstra, A., Kooistra, A., Seelen, M., & Offenbeek, M.V. (2020). The influence of electronic health record use on collaboration among medical specialties. BMC Health Serv Res., 20, 676. https://doi.org/10.1186/s12913-020-05542-6 DOI: https://doi.org/10.1186/s12913-020-05542-6

Xiao, C., Choi, E., & Sun, J. (2018). Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. Journal of the American Medical Informatics Association, 25(10), 1419–1428. https://doi.org/10.1093/jamia/ocy068 DOI: https://doi.org/10.1093/jamia/ocy068

Yang, M., Hu, W., & Yan, J. (2023). Development of machine learning models for predicting acute respiratory distress syndrome?evidence from the MIMIC-III and MIMIC-IV. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-3221576/v1 DOI: https://doi.org/10.21203/rs.3.rs-3221576/v1

Published

2024-09-30

How to Cite

Saraswat, B. K., Varshney, N., & Vashist, P. C. (2024). Machine Learning-Driven Assessment and Security Enhancement for Electronic Health Record Systems. International Journal of Experimental Research and Review, 43(Spl Vol), 160–175. https://doi.org/10.52756/ijerr.2024.v43spl.012