Design and Implementation of a Dual-Axis Solar Tracking System with IoT-Enhanced Monitoring Using Arduino
DOI:
https://doi.org/10.52756/ijerr.2024.v43spl.008Keywords:
Energy, Solar, sensors, Microcontroller, dual axis, IOTAbstract
The position of the sun varies over the day and with the seasons, making it difficult for conventional fixed solar panel systems to achieve optimum energy production. By reorienting the panels to face the sun, solar tracking systems solve this problem. This study suggests a dual-axis solar tracker system that continuously adjusts the panels to stay perpendicular to sunlight in order to maximize energy capture. The system uses sensors to monitor the sun's elevation and azimuth angles. Light sensors, motor controllers, microcontrollers, control algorithms, and an Internet of Things (IoT) monitoring system are some of the system's essential parts. The microprocessor determines the ideal angles for panel alignment based on the location of the sun as detected by the light sensors. The motor driver then adjusts the panels appropriately. The sun's position is accurately and smoothly tracked using dual-axis tracking systems, which employ sensors to detect solar position and actuators controlled by sophisticated algorithms to adjust the panels accordingly. Real-time parameter monitoring of the solar panel is done using an IoT-enabled webpage. The study's findings show that the dual-axis solar tracker system performs noticeably better in terms of energy capture efficiency than fixed installations, especially in areas with high solar incidence angles and fluctuating sunshine.
References
Achuthan, K., Freeman, J.D., Nedungadi, P., Mohankumar, U., & Varghes, A. (2020). Remote Triggered Dual-Axis Solar Irradiance Measurement System. IEEE Transactions on Industry Applications, 56(2), 1742-1751. https://doi.org/10.1109/TIA.2020.2966156. DOI: https://doi.org/10.1109/TIA.2020.2966156
Alam, M., Dewan, M.A., Bashar, S.S., Miah, M.S., & Ghosh, A. (2019). A Microcontroller Based Dual Axis Tracking System for Solar Panel. 3rd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, Bangladesh, pp. 25-28. https://doi.org/10.1109/I CECTE486 15. 2019.9303 534. DOI: https://doi.org/10.1109/ICECTE48615.2019.9303534
Alyaqoobi, A., Abulaila, A., Waleed, M., Alblooshi, S., Alzaabi, S., & Moumouni, Y. (2023). Design and Implementation of a Solar Tracker with Live Data Feed Utilizing IoT. Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, pp.1-6. https://doi.org/10.1109/ASET5 6582.2023.10180406. DOI: https://doi.org/10.1109/ASET56582.2023.10180406
Bauer, A., Hanisch, J., & Ahlswede, E. (2014). An Effective Single Solar Cell Equivalent Circuit Model for Two or More Solar Cells Connected in Series. IEEE Journal of Photovoltaics, 4(1), 340-347. https://doi.org/10.1109/JPHOTOV.2013.2283056. DOI: https://doi.org/10.1109/JPHOTOV.2013.2283056
Chilakapati, L. B., & Manohar, T. G. (2023). Control Strategies for Enhancing Power Quality with Unified Power Quality Conditioner in a Solar-PV Integrated Utility System. Int. J. Exp. Res. Rev., 35, 1-15. https://doi.org/10.52756/ijerr.2023.v35spl.001. DOI: https://doi.org/10.52756/ijerr.2023.v35spl.001
Fahad, H.M., Islam, A., Islam, M., Hasan, M.F., Brishty, W.F., & Rahman, M.M. (2019). Comparative Analysis of Dual and Single Axis Solar Tracking System Considering Cloud Cover. International Conference on Energy and Power Engineering (ICEPE), Dhaka, Bangladesh, pp. 1-5. https://doi.org/10.1109/CEPE.2019.8726646. DOI: https://doi.org/10.1109/CEPE.2019.8726646
Jurj, S. L., & Rotar, R. (2024). Increasing the Solar Reliability Factor of a Dual-Axis Solar Tracker Using an Improved Online Built-In Self-Test Architecture. IEEE Access, 12, 37715-37730. https://doi.org/10.1109/ACCESS.2024.3375333. DOI: https://doi.org/10.1109/ACCESS.2024.3375333
Kaur, T., Mahajan, S., Verma, S., Priyanka, & Gambhir, J. (2016). Arduino based low-cost active dual axis solar tracker, IEEE 1st International Conference on Power Electronics. Intelligent Control and Energy Systems (ICPEICES), Delhi, India, pp. 1-5. https://doi.org/10.1109/ICPEICES.2016.7853398. DOI: https://doi.org/10.1109/ICPEICES.2016.7853398
Khanam, S., Chavan, R., Bari, S., Gupta, K., Kuvekar, S., Shah, T., & Mhatre, J. (2022). Smart Solar Tracker with Energy Monitoring. International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, pp. 80-85. https://doi.org/10.1109/ICEARS53579.2022.9752255 DOI: https://doi.org/10.1109/ICEARS53579.2022.9752255
Khawaldeh, H.A., Al-soeidat, M., Dah-Chuan Lu, D., & Li, L. (2021). Fast Photovoltaic Emulator Based on PV-cell Equivalent Circuit Model. IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), Singapore, Singapore, pp. 2121-2126.
https://doi.org/10.1109/ECCE-Asia49820.2021.9479298. DOI: https://doi.org/10.1109/ECCE-Asia49820.2021.9479298
Konneh, K.V., Masrur, H., Othman, M.L., Wahab, N.I.A., Hizam, H., Islam, S.Z., Crossley, P., & Senjyu, T. (2021). Optimal Design and Performance Analysis of a Hybrid Off-Grid Renewable Power System Considering Different Component Scheduling. PV Modules, and Solar Tracking Systems in IEEE Access, 9, 64393-64413. https://doi.org/10.1109/ACCESS.2021.3075732 DOI: https://doi.org/10.1109/ACCESS.2021.3075732
Lin, F.J., Chou, P.H., Chen, C.S., & Lin, Y.S. (2012). DSP-Based Cross-Coupled Synchronous Control for Dual Linear Motors via Intelligent Complementary Sliding Mode Control. IEEE Transactions on Industrial Electronics, 59(2), 1061-1073. https://doi.org/10.1109/TIE.2011.2157286. DOI: https://doi.org/10.1109/TIE.2011.2157286
Masih, A., & Odinaev, I. (2019). Performance Comparison of Dual Axis Solar Tracker with Static Solar System in Ural Region of Russia, Ural Symposium on Biomedical Engineering. Radio electronics and Information Technology (USBEREIT), Yekaterinburg, Russia, pp. 375-378. https://doi.org/10.1109/U SBERE IT.201 9.8736642. DOI: https://doi.org/10.1109/USBEREIT.2019.8736642
Mohaimin, A.H., Uddin, M.R., & Law, F.K. (2018). Design and Fabrication of Single-Axis and Dual-Axis Solar Tracking Systems. IEEE Student Conference on Research and Development (SCOReD), Selangor, Malaysia, pp.1-4. https://doi.org/10.1109/SCORED.2018.8711044. DOI: https://doi.org/10.1109/SCORED.2018.8711044
Rana, M.S., Prodhan, R.S., & Hasan, M.N. (2020). Self Powered Automatic Dual Axis Tracking and Positioning System Design. IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, pp. 166-169. https://doi.org/10. 1109/T ENSYMP5 0017.2020.9230692. DOI: https://doi.org/10.1109/TENSYMP50017.2020.9230692
Reza, M.N., Hossain, M.S., Mondol, N., & Kabir, M.A. (2021). Design and Implementation of an Automatic Single Axis Solar Tracking System to Enhance the Performance of a Solar Photovoltaic Panel. International Conference on Science & Contemporary Technologies (ICSCT), Dhaka, Bangladesh, pp. 1-6. https://doi.org/10.1109/ICSCT53883.2021.9642557. DOI: https://doi.org/10.1109/ICSCT53883.2021.9642557
Saeedi, M., & Effatnejad, R. (2021). A New Design of Dual-Axis Solar Tracking System With LDR Sensors by Using the Wheatstone Bridge Circuit. IEEE Sensors Journal, 21(13), 14915-14922. https://doi.org/10.1109/JSEN.2021.3072876. DOI: https://doi.org/10.1109/JSEN.2021.3072876
Sarkar, T.S., Das, S., Chakraborty, B., & Dutta, H.S. (2019). Absolute Encoder-Based Dual Axis Tilt Sensor. IEEE Sensors Journal, 19(7), 2474-2481. https://doi.org/10.1109/JSEN.2018.2887026. DOI: https://doi.org/10.1109/JSEN.2018.2887026
Sawant, A., Bondre, D., Joshi, A., Tambavekar, P., & Deshmukh, A. (2018). Design and Analysis of Automated Dual Axis Solar Tracker Based on Light Sensors. 2nd International Conference on IoT in Social, Mobile, Analytics and Cloud (I-SMAC) Palladam, India, pp. 454-459. https://doi.org/10.1109/I-SMAC.2018.8653779. DOI: https://doi.org/10.1109/I-SMAC.2018.8653779
Shi, G.B., Guo, C., Wang, S., & Liu, T.Y. (2024). Angle Tracking and Fault-Tolerant Control of Steer-by-Wire System with Dual Three-Phase Motor for Autonomous Vehicle. IEEE Transactions on Intelligent Transportation Systems, 25(6), 5842-5853. https://doi.org/10.1109/TITS.2023.3335420 DOI: https://doi.org/10.1109/TITS.2023.3335420
Singh, M., Solanki, S., Agrawal, B., & Bhargava, R. (2024). Performance Evaluation and Cost Analysis of Photovoltaic Thermal (PVT) System Using the Triangular Shape of Absorber with Different Water-based Nanofluids as Coolants. International Journal of Experimental Research and Review, 39(Spl Volume), 51-72. https://doi.org/10.52756/ijerr.2024.v39spl.004. DOI: https://doi.org/10.52756/ijerr.2024.v39spl.004
Venkatesh. K. S., Kathirvel. C., Deepa, P., & Mohan, K.R. (2023). Design and Implementation of IoT based Dual Axis Solar Tracking System. 3rd International Conference on Smart Data Intelligence (ICSMDI), Trichy, India, pp. 542-545. https://doi.org/10.1109/ICS MDI5762 2.2023.00102. DOI: https://doi.org/10.1109/ICSMDI57622.2023.00102
Vieira, R.G., Guerra, F.K.O.M.V., Vale, M.R.B.G., & Araújo, M.M. (2016). Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator. Renewable and Sustainable Energy Reviews, pp. 64, 672-681. https:/ /doi.org/10.1 016/ j.rser.2016 .06.089. DOI: https://doi.org/10.1016/j.rser.2016.06.089
Waldron, S., Smith, & Karthik, V. (2023). Solar Tracking System Utilizing Internet of Things Technologies for Enhanced Power Generation. 12th International Conference on Renewable Energy Research and Applications (ICRERA), Oshawa, ON, Canada, pp. 269-272. https://doi.org/10.1109/ICRERA59003.2023.10269398. DOI: https://doi.org/10.1109/ICRERA59003.2023.10269398
Zhang, Z., Fan, R., Yang, X., Du, G., Wei, S., Zhang, L., & Wei, H. (2016). Two tracking control method to improve solar cell photoelectric efficiency. Chinese Control and Decision Conference (CCDC), Yinchuan, China, pp. 2446-2447. https://doi.org/10.1109/CCDC.2016.7531396. DOI: https://doi.org/10.1109/CCDC.2016.7531396
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.