Evaluation of Antioxidant, Anti-inflammatory and Antimicrobial Potential of Aegel marmelos Fruit Pulp Extracts against Clinical Pathogens

Authors

  • Saranya A Department of Zoology, Presidency College, Chennai–600005, Tamil Nadu, India
  • Sivakumari K Department of Zoology, Presidency College, Chennai–600005, Tamil Nadu, India https://orcid.org/0000-0003-2340-2996
  • Rajesh S Department of Clinical and Translational Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA – 25701 https://orcid.org/0000-0003-1027-4841
  • Shyamala Devi Department of Zoology, Presidency College, Chennai–600005, Tamil Nadu, India
  • Padmavathy K Department of Advanced Zoology and Biotechnology, Meenakshi College for Women, Chennai – 600024, India
  • Hemalatha M Department of Biochemistry, SRM Arts and Science College, Chengalpet – 603203, India

DOI:

https://doi.org/10.52756/ijerr.2024.v46.005

Keywords:

Herbal medicine, Aegle marmelos, DPPH, HRBC, Antibacterial, Antifungal

Abstract

In India, a wide range of medicinal plants are reported. Since ancient times, these medicinal plants have been used by people for the treatment of several diseases. Herbal medicines typically have fewer side effects compared to synthetic medicines, and they are also non-expensive. The aim of this study is to evaluate the antioxidant, in vitro anti-inflammatory activity through HRBC membrane stabilization, as well as the antimicrobial potential of fruit pulp extracts obtained from Aegle marmelos (A. marmelos). The antioxidant activity of the fruit pulp extracts was assessed using the DPPH assay. Various A. marmelos fruit pulp extracts viz., aqueous, chloroform, ethyl acetate, hexane, methanol and L-ascorbic acid were found to have IC50 values of 91.168 µg/mL, 153.22 µg/mL, 195.58 µg/mL, 164.741 µg/mL and 39.488 µg/mL, respectively, while for L-ascorbic acid (standard) it was 57.823 µg/mL. The anti-inflammatory activity of the fruit pulp extracts of aqueous, chloroform, ethyl acetate, hexane and methanol are also dependent on the concentrations. The hemp production (IC50) concentration was 99.761 µg/mL, 114.443 µg/mL, 167.423 µg/mL, 118.397 µg/mL and 23.244 µg/mL. Likewise, the antimicrobial activity of A. marmelos fruit pulp extracts demonstrated significant effects against clinical pathogens. Comparatively, the methanol fruit pulp extract of A. marmelos showed higher antimicrobial activity than that of the other four extracts; methanol fruit pulp extract contributed significantly to the development of antimicrobial properties. The findings of this study, thus, methanol fruit pulp extract, clearly showed that it had the strongest antioxidant, anti-inflammatory and antimicrobial activity when compared to the other four extracts.

References

Abdul Rahman, M.S., Kanakarajan, S., Selvaraj, R., Kamalanathan, A., Fatima, S., Abudawood, M., Siddiqi, N.J., Alanazi, H., Sharma, B., & de Lourdes Pereira, M. (2023). Elucidation of the Anticancer Mechanism of Durian Fruit (Durio zibethinus) Pulp Extract in Human Leukemia (HL-60) Cancer Cells. Nutr., 15(10), 2417. https://doi.org/10.3390/nu15102417

Abhishek Kumar, P., Sandip Prasad, T., Deepa, B., Yogesh, P., Harsurbhai, M.J., & Gaurav, S.D. (2023). Evaluation of Phytochemicals, Antioxidant and Anti-inflammatory properties of leaves of Ocimum basilicum L. Research Journal of Pharmacy and Technology, 16(4), 1981-1986. https://doi.org/10.52711/0974- 360X.2023.00325

Abhishek Kumar, P. (2024). Quantitative Estimation of Secondary Metabolite, In-vitro Antioxidant, Anti-Sickling & Anti-Inflammatory Activity by HRBC Membrane Stabilization of Ethanolic Extract of Bacopa monnieri (L.) Pennell. Advances in Pharmacology and Pharmacy, 12(1), 19 – 33. https://doi.org/10.13189/app.2024.120103

Acharya, C.K., Khan, N.S., & Madhu, N.R. (2022). Traditional Phyto-therapeutic uses by Tribal People in Western Sundarbans: Henry Island, Fredric Island and Bakkhali, West Bengal, India. Jour. Pl. Sci. Res., 38(2), 513–523. https://doi.org/10.32381/JPSR.2022.38.02.8

Arul, V., Miyazaki, S., & Dhananjayan, R. (2005). Studies on the anti-inflammatory, antipyretic, and analgesic properties of the leaves of Aegle marmelos Corr. Journal of Ethnopharmacology, 96(1–2), 159–163. https://doi.org/10.1016/j.jep.2004.09.01

Bashar, S., Kothakota, N., Ampolu, S., Anuja, N., Kanakala, V., & Rao, J. (2024). A FTIR Evident-Based Exploration of the Antioxidant Activity of Five Threatened Cactus Species. International Journal of Experimental Research and Review, 40(Spl Volume), 11-23. https://doi.org/10.52756/ijerr.2024.v40spl.002

Bauer, A. W., Kirby, W. M., & Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.

Bee, B., Jat, R., & Ahmad, S. (2023). Fabrication of microspheres and characterization of antimicrobial and anti-inflammatory activity isolated fraction from total alcoholic extract of Cassia fistula (Linn.) in carrageenan-Type-IV induced inflammatory rats. Int. J. Exp. Res. Rev., 32, 246-259. https://doi.org/10.52756/ijerr.2023.v32.021

Bhattacharya, S. (2017). Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharmaceutical Biology, 55, 349–354. https://doi.org/10.1080/13880209.2016.1235207

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0

Bowen, L., Jiali, G., Qing, D., Yi, L., Bibai, D., Ying, G., & Lixi, Z. (2024). Occurrence of Multiple Classes of Emerging Synthetic Antioxidants, Including p-Phenylenediamines, Diphenylamines, Naphthylamines, Macromolecular Hindered Phenols, and Organophosphites, in Human Milk: Implications for Infant Exposure. Environmental Science & Technology Letters, 11(3), 259-265. https://doi.org/10.1021/acs.estlett.4c00010

Brijesh, S., Daswani, P., & Tetali, P. (2009). Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: Validating its traditional usage. BMC Complement Altern Med., 9, 47. https://doi.org/10.1186/1472-6882-9-47

Chippada, S.C., Volluri, S.S., Bammidi, S.R., & Vangalapati, M. (2011). In vitro anti-inflammatory activity of methanolic extract of Centella asiatica by HRBC membrane stabilization. Rasayan J. Chem., 4(2),457-460.

Chothiphirat, A., Nittayaboon, K., Kanokwiroon, K., Srisawat, T., & Navakanitworakul, R. (2019). Anticancer potential of fruit extracts from Vatica diospyroides symington type SS and their effect on program cell death of cervical cancer cell lines. The Scienti?c World Journal, Article ID 5491904, 9 pages. https://doi.org/10.1155/2019/5491904

Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/cmr.12.4.564

Dogruoz, N., Zeybek, Z., & Karagoz, A. (2008). Antibacterial activity of some plant extracts. IUFS Journal of Biology, 67(1), 17–21.

Farina, M., Preeti, B., & Neelam, P. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Research International, 2014, Article ID 497606, 11 pages. https://doi.org/10.1155/2014/497606

Gao, J. J., Igalashi, K., & Nukina, M. (1999). Radical scavenging activity of phenylpropanoid glycosides in Caryopteris incana. Bioscience, Biotechnology, and Biochemistry, 63, 983–988. https://doi.org/10.1271/bbb.63.983

Ghosh, A., Das, B. K., Roy, A., Mandal, B., & Chanda, G. (2008). Antibacterial activity of some medicinal plant extracts. Journal of Natural Medicines, 62, 259–262. https://doi.org/10.1007/s11418-007-0216-x

Hassanpour, SH., & Doroudi, A. (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna J Phytomed., 13(4), 354-376. doi: 10.22038/AJP.2023.21774.

Hernández, F., Andreu-Coll, L., Bento-Silva, A., Serra, A. T., Mena, P., Legua, P., Bronze, M. R. (2022). Phytochemical Pro?le of Opuntia ?cus-indica (L.) Mill Fruits (cv. ‘Orito’) stored at different conditions. Foods, 11, 160. https://doi.org/10.3390/foods11020160

Hijam, A., Koijam, A., & Haobam, R. (2024). Methanol extract of Isodon ternifolius (D. Don) KUDO leaves has antimicrobial and antioxidant activities but no neuroprotective activity. International Journal of Experimental Research and Review, 39(Spl Volume), 200-212. https://doi.org/10.52756/ijerr.2024.v39spl.016

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.

Huang, Y.C., Hwang, T.L., Chang, C.S., Yang, Y.L., Shen, C.N., Liao, W.Y., Chen, S.C., & Liaw, C.C. (2009). Anti-in?ammatory flavonoids from the rhizomes of Helminthostachys zeylanica. Journal of Natural Products, 72, 1273–1278. https://doi.org/10.1021/np900148a

Ito, N., Fukushima, S., Hagiwara, A., Shibata, M., & Ogiso, T. (1983). Carcinogenicity of butylated hydroxyanisole in F344 rats. Journal of the National Cancer Institute, 70, 343–347.

Jagetia, G. C., Venkatesh, P., & Baliga, M. S. (2005). Aegle marmelos (L.) Correa inhibits the proliferation of transplanted Ehrlich ascites carcinoma in mice. Biological and Pharmaceutical Bulletin, 28(1), 58–64. https://doi.org/10.1248/bpb.28.58

Jayameena, P., Sivakumari, K., Ashok, K., & Rajesh, S. (2018b). In vitro anti-inflammatory (membrane stabilization) and antioxidant potential of rutin. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 4(3), 265–274. https://doi.org/10.26479/2018.0403.24

Kamalakkannan, N., & Prince, P. S. M. (2003). Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. Journal of Ethnopharmacology, 87(2–3), 207–210. https://doi.org/10.1016/s0378-8741(03)00148-x

Kamalakkannan, N., & Prince, P. S. M. (2005). Antihyperlipidaemic effect of Aegle marmelos fruit extract in streptozotocin-induced diabetes in rats. Journal of the Science of Food and Agriculture, 85(4), 569–573. https://doi.org/10.1002/jsfa.1978

Kamaraj, C., Kaushik, N.K., Rahuman, A.A., Mohanakrishnan, D., Bagavan, A., & Elango G. (2012). Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. J. Ethnopharmacol., 141(3),796–802.

Kingston, C., Jeeva, S., Jeeva, G. M., Kiruba, S., Mishra, B. P., & Kannan, D. (2009). Indigenous knowledge of using medicinal plants in treating skin diseases in Kanyakumari District, Southern India. Indian Journal of Traditional Knowledge, 8(2), 196–200.

Kumari, C. S., Yasmin, N., Hussain, M. R., & Babuselvam, M. (2015). In vitro anti-in?ammatory and anti-arthritic property of Rhizopora mucronata leaves. International Journal of Pharmaceutical Sciences Review, 6, 482–485.

Lourenco, A. M., Ferreira, L. M., & Branco, P. S. (2012). Molecules of natural origin, semi-synthesis and synthesis with anti-inflammatory and anticancer utilities. Current Pharmaceutical Design, 18, 3979–4046. https://doi.org/10.2174/138161212802083644

Manandhar, B., Paudel, K. R., Sharma, B., & Karki, R. (2018). Phytochemical profile and pharmacological activity of Aegle marmelos Linn. Journal of Integrative Medicine, 16(3), 153–163. https://doi.org/10.1016/j.joim.2018.04.007

Mohamad Sitheek, A., Sivakumari, K., Rajesh, S., Ashok, K., Fatima, S., Abudawood, M., Jamal Siddiqi, N., Alanazi, H., Sharma, B., & De Lourdes Pereira, M. (2023). Elucidation of anticancer mechanism of Durian fruit (Durio zibethinus) pulp extract on Human Leukemia (HL-60) cancer cells. Nutrients, 15, 2417. https://doi.org/10.3390/nu15102417

Nair, R., Kalariya, T., & Chanda, S. (2005). Antibacterial activity of some selected Indian medicinal flora.Turk J. Biol., 29, 41- 47.

Naz, R., Ayub, H., Nawaz, S., Islam, Z. U., Yasmin, T., Bano, A., Wakeel, A., Zia, S., & Roberts, T. H. (2017). Antimicrobial activity, toxicity and anti-in?ammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complementary and Alternative Medicine, 17, 302. https://doi.org/10.1186/s12906-017-1815-z

Osawa, T., & Namiki, M. (1981). A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves. Agricultural and Biological Chemistry, 45, 735–739. https://doi.org/10.1080/00021369.1981.10864583

Padmavathy, K., Sivakumari, K., Karthika, S., Rajesh, S., & Ashok, K. (2021). Phytochemical profiling and anticancer activity of dragon fruit Hylocereus undatus extracts against human hepatocellular carcinoma cancer (HepG-2) cells. Int. J. Pharm. Sci. Res., 12(5), 2770-2778. https://doi.org/10.13040/IJPSR.0975-8232.12(5).2770-78

Prior, R. L., & Cao, G. (2000). Antioxidant phytochemicals in fruits and vegetables. Diet and health implications. Horticultural Science, 35, 588–592. https://doi.org/10.21273/HORTSCI.35.4.588

Rafi, M., Meitary, N., Septaningsih, D. A., & Bintang, M. (2020). Phytochemical profile and antioxidant activity of Guazuma ulmifolia leaves extracts using different solvent extraction. Indonesian Journal of Pharmacy, 31(3), 171–180. https://doi.org/10.22146/ijp.598

Rai, A., & Sharma, A. (2024). An Ethno-Pharmacological Study of Wound Healing Medicinal Plants Used by Traditional Healers in Dhamtari, Chhattisgarh, India. International Journal of Experimental Research and Review, 38, 194-207. https://doi.org/10.52756/ijerr.2024.v38.018

Rajadurai, M., Padmanabhan, M., & Prince, P. S. M. (2005). Effect of Aegle marmelos leaf extract and alpha-tocopherol on lipid peroxidation and antioxidants in isoproterenol-induced myocardial infarction in rats. Cardiology, 1, 40–45.

Rajesh, S., Sivakumari, K., Ashok, K., & Abitha, A.R. (2016). Anticancer activity of Cardiospermum halicacabum Linn. leaf extracts against hepatocellular carcinoma cell line (Hep-G2). World Journal of Pharmacy and Pharmaceutical Science, 5(3), 1133-1154.

Rajesh, S., Sivakumari, K., & Ashok, K. (2020). Antioxidant potential of isolated fractions from methanol leaf extract of Cardiospermum halicacabum. J. Adv. Sci. Res., 11(5), 13-16. https://doi.org/6

Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. Int. J. Exp. Res. Rev., 30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024

Ribeiro, V. P., Arruda, C., Abd El-Salam, M., & Bastos, J. K. (2018) Brazilian medicinal plants with corroborated anti-inflammatory activities: A review. Pharmaceutical Biology, 56(1), 253–268. https://doi.org/10.1080/13880209.2018.1454480

Rice-Evans, C. (2004). Flavonoids and isoflavones: Absorption, metabolism and bioactivity. Free Radical Biology and Medicine, 36, 827–828. https://doi.org/10.1016/j.freeradbiomed.2003.12.012

Sabu, M. C., & Kuttan, R. (2004). Antidiabetic activity of Aegle marmelos and its relationship with its antioxidant properties. Indian Journal of Physiology and Pharmacology, 48(1), 81–88.

Sadef, Y., Javed, T., Javed, R., Mahmood, A., Alwahibi, MS., & Elshikh, MS. (2022) Nutritional status, antioxidant activity and total phenolic content of different fruits and vegetables’ peels. PLoS ONE, 17(5), e0265566. https://doi.org/10.1371/journal.pone.0265566

Sadique, J., Al-Rqobahs, W. A., Bughaith, E. I., & Gindi, A. R. (1989). The bioactivity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia, 60, 525–532.

Salama, Z.A., Aboul-Enein, A.M., Gaafar, A.A., Abou-Elella, F., Aly, H.F., Asker, M.S., & Ahmed, H.A. (2018). Active constituents of kiwi (Actinidia deliciosa Planch) peels and their biological activities as antioxidant, antimicrobial and anticancer. Research Journal of Chemistry and Environment, 22(9), 52–59.

Salazar, R., Pozos, M. E., Cordero, P., Perez, J., Salinas, M. C., & Waksman, N. (2008). Determination of the antioxidant activity of plants from Northeast Mexico. Pharmaceutical Biology, 46, 166–170. https://doi.org/10.1093/ecam/nep127

Santangelo, C., Varì, R., & Scazzocchio, B. (2007). Polyphenols, intracellular signaling, and inflammation. Annali Dell'istituto Superiore di Sanita, 43(4), 394-405.

Saradha Jyothi, K., & Subba Rao, B. (2010). Antibacterial activity of extracts from Aegle marmelos against standard pathogenic bacterial strains. International Journal of PharmTech Research, 2(3), 1824–1826.

Sarkar, B., Biswas, P., Acharya, C.K., Ghorai, S.K., Nahar, N., Jana, S.K., Ghosh, S., Sarkar, D., Behera, B., & Madhu, N.R. (2021). Knowledge of Traditional Indian Medicinal Plants for the Management of COPD. Chettinad Health City Medical Journal,10(4), 184 – 189. https://doi.org/10.36503/chcmj10(4)-05

Sarkar, B., Kotal, H.N., Giri, C.K., Mandal, A., Hudait, N., Madhu, N.R., Saha, S., Basak, S.K., Sengupta, J., & Ray, K. (2024). Detection of a bibenzyl core scaffold in 28 common mangrove and associate species of the Indian Sundarbans: potential signature molecule for mangrove salinity stress acclimation. Front. Plant Sci., 14, 1291805. https://doi.org/10.3389/fpls.2023.1291805

Sharma, P. C., Bhatia, V., Bansal, N., & Sharma, A. (2007). A review on Bael tree. Natural Product Radiance, 6(2), 171–178.

Srivastva, S. D., Srivastva, S., & Srivastva, S. K. (1996). A new insecticidal protolimonoid. Fitoterapia, 67, 83–84. https://doi.org/10.52711/0974-360X.2023.00662

Sur, T. K., Pandit, S., & Pramanik, T. (1999). Antispermatogenic activity of leaves of Aegle marmelos Corr. in albino rats: A preliminary report. Biomedicine, 19(3), 199–202.

Williams, G. M., Iatropoulos, M. J., & Whysner, J. (1999). Safety assessment of butylated hydroxyanisole and butylated hydroxyltoluene as antioxidant food additives. Food and Chemical Toxicology, 37, 1027–1038. https://doi.org/10.1016/s0278-6915(99)00085-x

Yang, R., Yuan, B. C., Ma, Y. S., Zhou, S., & Liu, Y. (2017). The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharmaceutical Biology, 55, 5–18. https://doi.org/10.1080/13880209.2016.1225775

Yen, G. C., Duh, P. D., & Tsai, C. L. (1993). Relationship between antioxidant activity and maturity of peanut hulls. Journal of Agricultural and Food Chemistry, 41(5), 67–70. https://doi.org/10.1021/jf00025a015

Published

2024-12-30

How to Cite

A, S., K, S., S, R., Devi, S., K, P., & M, H. (2024). Evaluation of Antioxidant, Anti-inflammatory and Antimicrobial Potential of Aegel marmelos Fruit Pulp Extracts against Clinical Pathogens. International Journal of Experimental Research and Review, 46, 58–75. https://doi.org/10.52756/ijerr.2024.v46.005

Issue

Section

Articles