Evaluating Mobile Wallet Adoption Barriers Using Fuzzy Mathematical Model

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v44spl.023

Keywords:

Mobile Wallet, Adoption Barriers, MCDM, Fuzzy PROMETHEE

Abstract

A tremendous amount of research has been done on the factors influencing mobile wallet adoption as mobile wallet technology has seen rapid growth. Using expert opinion and Fuzzy PROMETHEE approach, this study investigates the key barriers to mobile wallet adoption. Mobile wallet adoption is constrained by Technological, security and infrastructural barriers, making adoption more challenging when user acceptance is skewed in emerging markets. In this study, we use the F-PROMETHEE to rank these barriers based on expert opinions. A panel of fintech and digital payments experts assessed the key adoption obstacles. Included in the PROMETHEE method were methods for handling variability or uncertainty through fuzzy logic and through subjective expert judgments. The results suggest that the major barriers to the adoption of mobile wallets were identified as risk and usage constraints. Moreover, value barriers are a leading factor. This study found that the risk and value barriers are the two principal risks that must be overcome to raise the client accepted rate of m-wallet services. A step forward in the assessment of such obstacles is the innovative use of a fuzzy mathematical model, which provides a more complex and adaptable approach than traditional methods. This study has learnt a few lessons that can help policy makers and industry players understand how to overcome the main barriers to mobile wallet adoption.

References

Account-to-account payments and instant payments set to spark new wave of innovation - Capgemini. (2024). Capgemini.

https://www.capgemini.com/news/press-releases/account-to-account-payments-and-instant-payments-set-to-spark-new-wave-of-innovation/

Ajina, A. S., Javed, H. M. U., Ali, S., & Zamil, A. M. A. (2023). Are men from mars, women from venus? Examining gender differences of consumers towards mobile-wallet adoption during pandemic. Cogent Business & Management, 10(1).

https://doi.org/10.1080/23311975.2023.2178093

Amoozad Mahdiraji, H., Arzaghi, S., Stauskis, G., & Zavadskas, E. K. (2018). A hybrid fuzzy BWM-COPRAS method for analyzing key factors of sustainable architecture. Sustainability, 10(5), 1626. https://doi.org/10.3390/su10051626

Anuar, N. I. M., Nik Mahdi, N. M., Nik Hashim, N. A. A., Mohamad, S. R., Zainuddin, S. A., Azmi, N. F., & Wan Zulkiffli, W. F. (2020). The barriers towards the adoption of E-wallet payment system. International Journal of Engineering Research and Technology, 13(11), 3772. https://doi.org/10.37624/ijert/13.11.2020.3772-3777

Biswas, S., Pamucar, D. A modified EDAS model for comparison of mobile wallet service providers in India. Financ Innov., 9, 41 (2023). https://doi.org/10.1186/s40854-022-00443-5

Arif, I., Aslam, W., & Hwang, Y. (2020). Barriers in adoption of internet banking: A structural equation modeling - Neural network approach. Technology in Society, 61(101231). 101231. https://doi.org/10.1016/j.techsoc.2020.101231

Borraz-Mora, J., Bordonaba-Juste, V., & Polo-Redondo, Y. (2017). Functional barriers to the adoption of electronic banking: the moderating effect of gender. Revista de Economía Aplicada, 25(75), 87–107.

Brans, J.P. (1982). Lingenierie de la decision. Elaboration dinstruments daide a la decision. Methode PROMETHEE. In: Nadeau, R., Landry, M. (Eds.), Laide a la Decision: Nature, Instrument s et Perspectives Davenir. Presses de Universite Laval, Qu ebec, Canada, pp. 183–214.

Bruner II, G.C., & Kumar, A. (2005). Explaining consumer acceptance of handheld internet devices. Journal of Business Research, 58(5), 553–558. https://doi.org/10.1016/j.jbusres.2003.08.002

Cacas, A., Diongson, M. B. A., Olita, G. M., & Perkins, R. (2022). Influencing Factors on Mobile Wallet Adoption in the Philippines: Generation X’s Behavioral Intention to Use GCash Services. Journal of Business and Management Studies, 4(1), 149–156. https://doi.org/10.32996/jbms.2022.4.1.18

Choi, H., Park, J., Kim, J., & Jung, Y. (2020). Consumer preferences of attributes of mobile payment services in South Korea. Elsevier BV, 51, 101397-101397. https://doi.org/10.1016/j.tele.2020.101397

Eriksson, N., Gökhan, A., & Stenius, M. (2021, January 1). A qualitative study of consumer resistance to mobile payments for in-store purchases. Elsevier BV, 181, 634-641. https://doi.org/10.1016/j.procs.2021.01.212

George, A., & Sunny, P. (2020). Developing a Research Model for Mobile Wallet Adoption and Usage. SAGE Publishing, 10(1), 82-98. https://doi.org/10.1177/2277975220965354

Gupta, A., & Arora, N. (2017). Understanding determinants and barriers of mobile shopping adoption using behavioral reasoning theory. Journal of Retailing and Consumer Services, 36, 1–7. https://doi.org/10.1016/j.jretconser.2016.12.012

Hatami-Marbini, A., & Tavana, M. (2011). An extension of the Electre I method for group decision-making under a fuzzy environment. Omega, 39(4), 373–386. https://doi.org/10.1016/j.omega.2010.09.001

Hew, J.J., Leong, L.Y., Tan, G.W.H., Ooi, K.B., & Lee, V.H. (2019). The age of mobile social commerce: An Artificial Neural Network analysis on its resistances. Technological Forecasting and Social Change, Elsevier, 144(C), 311-324.

https://doi.org/10.1016/j.techfore.2017.10.007

Kapoor, A., Sindwani, R., & Goel, M. (2023). Evaluating mobile wallet acceptance factors using best worst method. International Journal of Process Management and Benchmarking, 13(4), 449. https://doi.org/10.1504/ijpmb.2023.129822

Kaur, P., Dhir, A., Singh, N., Sahu, G., & Almotairi, M. (2020). An innovation resistance theory perspective on mobile payment solutions. Journal of Retailing and Consumer Services, 55, 102059. https://doi.org/10.1016/j.jretconser.2020.102059

Krishankumar, R., Ravichandran, K. S., Shyam, V., Sneha, S. V., Kar, S., & Garg, H. (2020). Multi-attribute group decision-making using double hierarchy hesitant fuzzy linguistic preference information. Neural Computing & Applications, 32(17), 14031–14045. https://doi.org/10.1007/s00521-020-04802-0

Kuganathan, K. V., & Wikramanayake, G. N. (2014, December). Next generation smart transaction touch points. IEEE, In 2014 14th International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 96-102.

https://doi.org/10.1109/ICTER.2014.7083886

Kumari, R., & Mishra, A. R. (2020). Multi-criteria COPRAS method based on parametric measures for intuitionistic fuzzy sets: Application of green supplier selection. Iranian Journal of Science and Technology Transactions of Electrical Engineering, 44(4), 1645–1662. https://doi.org/10.1007/s40998-020-00312-w

Leong, L.Y., Hew, T.S., Ooi, K.B., & Wei, J. (2020). Predicting mobile wallet resistance: a two-staged structural equation modeling-artificial neural network approach. International Journal of Information Management, 51, 102047.

https://doi.org/10.1016/j.ijinfomgt.2019.102047

Lian, J.W., & Yen, D.C. (2014). Online shopping drivers and barriers for older adults: age and gender differences. Computers in Human Behavior, 37, 133–143. https://doi.org/10.1016/j.chb.2014.04.028

Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: the case of the internet and mobile banking. Journal of Business Research, 69(7), 2432–2439.

https://doi.org/10.1016/j.jbusres.2016.01.013

Madan, K., & Yadav, R. (2016). Behavioural intention to adopt mobile wallet: a developing country perspective. Journal of Indian Business Research, 8(3), 227-244. https://doi.org/10.1108/JIBR-10-2015-0112

Mishra, A. R., Rani, P., Pandey, K., Mardani, A., Streimikis, J., Streimikiene, D., & Alrasheedi, M. (2020). Novel multi-criteria intuitionistic fuzzy SWARA–COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability, 12(10), 4155. https://doi.org/10.3390/su12104155

Mishra, A. R., Rani, P., Mardani, A., Pardasani, K. R., Govindan, K., & Alrasheedi, M. (2020). Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Computers & Industrial Engineering, 139(106140), 106140. https://doi.org/10.1016/j.cie.2019.106140

Moorthy, K., Suet Ling, C., Weng Fatt, Y., Mun Yee, C., Ket Yin, E. C., Sin Yee, K., & Kok Wei, L. (2017). Barriers of mobile commerce adoption intention: Perceptions of generation X in Malaysia. Journal of Theoretical and Applied Electronic Commerce Research, 12(2), 37–53. http://dx.doi.org/10.4067/S0718-18762017000200004

Na, N T L., & Hi?n, N N. (2021). A study of user’s m-wallet usage behavior: The role of long-term orientation and perceived value. Cogent OA, 8(1). https://doi.org/10.1080/23311975.2021.1899468

Oubahman, L., & Duleba, S. (2021). Review of PROMETHEE method in transportation. Production Engineering Archives, 27(1), 69–74. https://doi.org/10.30657/pea.2021.27.9

Rana, N P., Luthra, S., & Rao, H. (2020). Assessing Challenges to Mobile Wallet Usage in India: An Interpretive Structural Modeling Approach. Springer Science+Business Media, pp. 103-113. https://doi.org/10.1007/978-3-030-64861-9_10.

Rombe, E., Zahara, Z., Santi, I. N., & Rahadhini, M. D. (2021). Exploring e-mobile banking implementation barriers on Indonesian millennial generation consumers. International Journal of Data and Network Science, 5(4), 579–586.

https://doi.org/10.5267/j.ijdns.2021.8.010

Singh, N., & Sinha, N. (2020). How perceived trust mediates merchant's intention to use a mobile wallet technology. Elsevier BV, 52, 101894-101894. https://doi.org/10.1016/j.jretconser.2019.101894

Sivagami, R., Ravichandran, K. S., Krishankumar, R., Sangeetha, V., Kar, S., Gao, X.Z., & Pamucar, D. (2019). A Scientific Decision Framework for Cloud Vendor Prioritization under Probabilistic Linguistic Term Set Context with Unknown/Partial Weight Information. Symmetry, 11(5), 682. https://doi.org/10.3390/sym11050682

Sivathanu, B. (2019). Adoption of digital payment systems in the era of demonetization in India. Journal of Science and Technology Policy Management, 10(1), 143–171. https://doi.org/10.1108/jstpm-07-2017-0033

Statista. (2018). Number of Apple Pay, Samsung Pay and Android Pay Contactless Payment Users from 2015 to 2017 (In Millions) [online]

https://www.statista.com/statistics/722213/user-baseof- leading-digital-wallets-nfc/

Tan, K.S., Chong, S.C., Loh, P.L., & Lin, B. (2010). An evaluation of e-banking and m-banking adoption factors and preference in Malaysia: a case study. International Journal of Mobile Communications, 8(5), 507–527.

https://doi.org/10.1504/IJMC.2010.034935

Talwar, S., Dhir, A., Khalil, A., Mohan, G., & Islam, A.N. (2020). Point of adoption and beyond. Initial trust and mobile-payment continuation intention. Elsevier BV, 55, 102086-102086. https://doi.org/10.1016/j.jretconser.2020.102086

Tong, L. Z., Wang, J., & Pu, Z. (2021). Sustainable supplier selection for SMEs based on an extended PROMETHEE ? approach. Journal of Cleaner Production, 330, 129830. https://doi.org/10.1016/j.jclepro.2021.129830

Venkatraman, S. (2008). Mobile payment implementation: a reference framework. Inderscience Publishers, 3(3), 252-252.

https://doi.org/10.1504/ijbis.2008.017284

Yu, C.S., & Chantatub, W. (2015). Consumers resistance to using mobile banking: evidence from Thailand and Taiwan. International Journal of Electronic Commerce Studies, 7(1), 21–38. https://doi.org/10.7903/ijecs.1375

Published

2024-10-30

How to Cite

Kumari, A., Kumari, D., & Agarwal, R. (2024). Evaluating Mobile Wallet Adoption Barriers Using Fuzzy Mathematical Model. International Journal of Experimental Research and Review, 44, 266–276. https://doi.org/10.52756/ijerr.2024.v44spl.023