Experimental Investigation and Optimization of Forming Parameters in Single Point Incremental Forming of AZ31 Magnesium Alloy

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v46.019

Keywords:

Analysis of Variance (ANOVA), Magnesium alloy, Response Surface Methodology (RSM), Incremental FormingIncremental Forming, Surface roughness, Taguchi’s DOE

Abstract

A novel and adaptable forming method, known as Single Point Incremental Forming (SPIF), has emerged to meet the growing needs of the manufacturing industry. This technique is precious for producing innovative products from sheet metal, offering enhanced flexibility and precision in fabrication. The input parameters during the forming process play a crucial role in determining the final product's formability in terms of maximum formable depth (MFD) and surface quality in terms of average surface roughness (Ra). The present research aims to optimise the forming parameters for formability and surface quality during SPIF of material AZ31 magnesium alloy. In the present research, AZ31 is selected as the target material due to its widely recognized excellent strength-to-weight ratio, making it ideal for lightweight applications in the automotive, aerospace, and electronics industries. The experiments are accomplished based on the use of a Taguchi's design of experiments. The tool diameter (TD), tool rotational speed (TRS), tool feed rate (TFR), and incremental step depth (ISD) were chosen as variable parameters and, keeping other parameters constant for maximum formable depth and average surface roughness as response parameters. The best parameter settings were found, and the statistically significant parameters of the responses were examined using the Analysis of Variance (ANOVA). The results revealed that the maximum formable depth (23.5 mm), representing the material's formability, increases with larger tool diameters (10 mm and 12 mm), and higher tool rotational speeds (5000 rpm and 6000 rpm) but decreases with higher tool feed rates (500 mm/min and 600 mm/min). On the other hand, surface roughness improves (decreases) with higher tool rotational speeds, while it increases with larger tool diameters, higher tool feed rates and greater incremental step depths. Furthermore, the findings of a confirmation experiment using the optimal conditions showed a good agreement with the experimental observation. Additionally, linear regression models for predicting the maximum forming depth and average surface roughness were developed by applying the response surface methodology (RSM), which also had good agreement with experiments conducted on optimal parameters.

References

Bansal, A., Lingam, R., Yadav, S. K., & Reddy, N. V. (2017). Prediction of forming forces in single point incremental forming. Journal of Manufacturing Processes, 28(3), 486-493. https://doi.org/10.1016/j.jmapro.2017.04.016

Bao, W., Chu, X., Lin, S., & Gao, J. (2015). Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Materials & Design, 87, 632-639. https://doi.org/10.1016/j.matdes.2015.08.072

Bhasker, R. S., & Kumar, Y. (2023). Process capabilities and future scope of Incremental Sheet Forming (ISF). Materials Today: Proceedings, 72(3), 1014-1019. https://doi.org/10.1016/j.matpr.2022.09.120

Bohlen, J., Cano, G., Drozdenko, D., Dobron, P., Kainer, K. U., Gall, S., Müller, S., & Letzig, D. (2018). Processing Effects on the Formability of Magnesium Alloy Sheets. Metals, 8(2), 147. https://doi.org/10.3390/met8020147

Chang, Z., Li, M., & Chen, J. (2019). Analytical modeling and experimental validation of the forming force in several typical incremental sheet forming processes. International Journal of Machine Tools and Manufacture, 140, 62-76. https://doi.org/10.1016/j.ijmachtools.2019.03.003

Chen, M. -S., Yuan, W. -Q., Li, H. -B., & Zou, Z. -H. (2018). New insights on the relationship between flow stress softening and dynamic recrystallization behavior of magnesium alloy AZ31B. Materials Characterization, 147, 173-183. https://doi.org/10.1016/j.matchar.2018.10.031

Duflou, J.R., Verbert, J., Belkassem, B., Gu, J., Sol, H., Henrard, C., & Habraken, A.M. (2008). Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Annals, 57(1), 253-256. https://doi.org/10.1016/j.cirp.2008.03.030

Dureja, J. S., Singh, R., & Bhatti, M. S. (2014). Optimizing Flank Wear and Surface Roughness during Hard Turning of AISI D3 Steel by Taguchi and RSM Methods. Production & Manufacturing Research, 2(1), 767–783. https://doi.org/10.1080/21693277.2014.955216

Dziubinska, A., Gontarz, A., Horzelska, K., & Pie?ko, P. (2015). The Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Technology. Procedia Manufacturing, 2, 337-341. https://doi.org/10.1016/j.promfg.2015.07.059

Galdos, L., Sáenz de Argandoña, E., Ulacia, I., & Arruebarrena, G. (2012). Warm Incremental Forming of Magnesium Alloys Using Hot Fluid as Heating Media. Key Engineering Materials, pp. 504-506, 815-820. https://doi.org/10.4028/www.scientific.net/kem.504-506.815

Golakiya, V. D., & Chudasama, M. K. (2022). Experimental Formability Study of Ti6Al4V Sheet Metal using Friction Stir Heat Assisted Single Point Incremental Forming Process. International Journal of Engineering Transactions C: Aspects, 35(3), 560-566. https://doi.org/10.5829/ije.2022.35.03C.08

Gulati, V., Aryal, A., Katyal, P., & Goswami, A. (2016). Process Parameters Optimization in Single Point Incremental Forming. Journal of The Institution of Engineers (India): Series C, 97, 185–193. https://doi.org/10.1007/s40032-015-0203-z

Gundarneeya, T. P., Golakiya, V. D., Ambaliya, S. D. & Chauhan, K. K. (2022). Optimization of single point incremental forming process through experimental investigation on SS 304 DDQ steel. Materials Today: Proceedings, 57(2), 753-760. https://doi.org/10.1016/j.matpr.2022.02.283

Husmann, T., & Magnus, C. S. (2016). Thermography in incremental forming processes at elevated temperatures. Measurement, 77, 16-28. https://doi.org/10.1016/j.measurement.2015.09.004

Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric Single Point Incremental Forming of Sheet Metal. CIRP Annals, 54(2), 88-114. https://doi.org/10.1016/S0007-8506(07)60021-3

Ji, Y. H., & Park, J. J. (2008). Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology, 201(1-3), 354-358. https://doi.org/10.1016/j.jmatprotec.2007.11.206

Kim, Y. H., & Park J. J. (2002). Effect of Process Parameters on Formability in Incremental Forming of Sheet Metal. Journal of Materials Processing Technology, 130-131, 42-46. https://doi.org/10.1016/S0924-0136(02)00788-4

Kumar, A., & Gulati, V. (2019). Experimental Investigation and Optimization of Surface Roughness in Negative Incremental Forming. Measurement, 131, 419-430. https://doi.org/10.1016/j.measurement.2018.08.078

Kumar, A., Soota, T., & Kumar, J. (2018). Optimisation of Wire-Cut EDM Process Parameter by Grey-Based Response Surface Methodology. Journal of Industrial Engineering International, 14, 821–829. https://doi.org/10.1007/s40092-018-0264-8

Li, Y., Chen, X., Liu, Z., Sun, J., Li, F., Li, J., & Zhao, G. (2006). A review on the recent development of incremental sheet-forming process. The International Journal of Advanced Manufacturing Technology, 92, 2439–2462. https://doi.org/10.1007/s00170-017-0251-z

Li, Y., Lu, H., Daniel, W. J. T., & Meehan, P. A. (2015). Investigation and Optimization of Deformation Energy and Geometric Accuracy in the Incremental Sheet Forming Process using Response Surface Methodology. The International Journal of Advanced Manufacturing Technology, 79, 2041-2055. https://doi.org/10.1007/s00170-015-6986-5

Mcanulty, T., Jeswiet, J., & Doolan, M. (2017). Formability in single point incremental forming: a comparative analysis of the state of the art. CIRP Journal of Manufacturing Science and Technology, 16, 43-54. https://doi.org/10.1016/j.cirpj.2016.07.003

Min, J., Kuhlenkotter, B., Shu, C., Storkle, D., & Thyssen, L. (2018). Experimental and numerical investigation on incremental sheet forming with flexible die-support from metallic foam. Journal of Manufacturing Processes, 31, 605-612. https://doi.org/10.1016/j.jmapro.2017.12.013

Mulay, A., Ben, S., Ismail, S., & Kocanda, A. (2017). Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 3997-4010. https://doi.org/10.1007/s40430-016-0703-7

Murugesan, M., Bhandari, K. S., Sajjad, M., & Jung, D. (2021). Investigation of Surface Roughness in Single Point Incremental Sheet Forming Considering Process Parameters. International Journal of Mechanical Engineering and Robotics Research, 10(8), 443-451. https://doi.org/10.18178/ijmerr.10.8.443-451

Neugebauer, R., Altan, T., Geiger, M., Kleiner, M., & Sterzing, A. (2006). Sheet metal forming at elevated temperatures. CIRP Annals, 55(2), 793–816. https://doi.org/10.1016/j.cirp.2006.10.008

Nguyen, D. T., Park, J. G. & Kim, Y. S. (2010). Ductile Fracture Prediction in Rotational Incremental Forming for Magnesium Alloy Sheets Using Combined Kinematic/Isotropic Hardening Model. Metallurgical and Materials Transactions A, 41, 1983-1994. https://doi.org/10.1007/s11661-010-0235-1

Nguyen, N. T., Seo, O. S., Lee, C. A., Lee, M. G., Kim, J. H., & Kim, H. Y. (2014). Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures. Materials, 7(2), 1271-1295. https://doi.org/10.3390/ma7021271

Otsu, M. (2016). Excellent Formability of Light Metals Sheets by Friction Stir Incremental Forming. Key Engineering Materials, 716, 3-10. https://doi.org/10.4028/www.scientific.net/KEM.716.3

Patel, D., & Gandhi, A. (2022). A review article on process parameters affecting Incremental Sheet Forming (ISF). Materials Today: Proceedings, 63, 368-375. https://doi.org/10.1016/j.matpr.2022.03.208

Rizvi, S. A. H., Sahu, R., Siddiqui, S. A., Shah, K. K., Bajpai, V. K., & Lal, B. (2024). Assessment of Recast Layer while Machining Die Steel D3 on EDM. International Journal of Experimental Research and Review, 41(Spl Vol), 96-105. https://doi.org/10.52756/ijerr.2024.v41spl.008

Saidi, B., Boulila, A., Ayadi, M., & Nasri, R. (2015). Experimental force measurements in single point incremental sheet forming SPIF. Mechanics & Industry, 16(4). https://doi.org/10.1051/meca/2015018

Sharma, M., Bhattacharya, A., & Paul, S. K. (2024). Influence of single point incremental forming on the low-cycle fatigue performance of AA6061-T6. International Journal of Fatigue, 178, 107994. https://doi.org/10.1016/j.ijfatigue.2023.107994

Sivarao, S., Milkey, K. R., Samsudin, A. R., Dubey, A. K., & Kidd, P. (2014). Comparison between Taguchi Method and Response Surface Methodology (RSM) in Modelling CO2 Laser Machining. Jordan Journal of Mechanical and Industrial Engineering, 8, 35-42.

Villeta, M., Rubio, E. M., Sáenz De Pipaón, J. M., & Sebastián, M. A. (2011). Surface Finish Optimization of Magnesium Pieces Obtained by Dry Turning Based on Taguchi Techniques and Statistical Tests. Materials and Manufacturing Processes, 26(12), 1503-1510. https://doi.org/10.1080/10426914.2010.544822

Xu, D. K., Lu, B., Cao, T. T., Chen, J., Long, H., & Cao, J. (2014). A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming. Procedia Engineering, 81, 2324-2329. https://doi.org/10.1016/j.proeng.2014.10.328

Xu, D. K., Lu, B., Cao, T. T., Zhang, H., Chen, J., Long, H., & Cao, J. (2016). Enhancement of process capabilities in electrically-assisted double sided incremental forming. Materials & Design, 92, 268-280. https://doi.org/10.1016/j.matdes.2015.12.009

Yang, D. Y., Bambach, M., Cao, J., Duflou, J. R., Groche, P., Kuboki, T., Sterzing, A., Tekkaya, A. E., & Lee, C. W. (2018). Flexibility in metal forming. CIRP Annals, 67(2), 743-765. https://doi.org/10.1016/j.cirp.2018.05.004

Zhang, Q., Xiao, F., Guo, H., Li, C., Gao, L., Guo, X., Han, W., & Boundarev, A. B. (2010). Warm negative incremental forming of magnesium alloy AZ31 Sheet: New lubricating method. Journal of Materials Processing Technology, 210(2), 323-329. https://doi.org/10.1016/j.jmatprotec.2009.09.018

Zhang, S., Tang, G. H., Wang, W. & Jiang X. (2020). Evaluation and optimization on the formability of an AZ31B Mg alloy during warm incremental sheet forming assisted with oil bath heating. Measurement, 157, 107673. https://doi.org/10.1016/j.measurement.2020.107673

Published

2024-12-30

How to Cite

Patel, D. M., & Gandhi, A. H. (2024). Experimental Investigation and Optimization of Forming Parameters in Single Point Incremental Forming of AZ31 Magnesium Alloy. International Journal of Experimental Research and Review, 46, 240–252. https://doi.org/10.52756/ijerr.2024.v46.019

Issue

Section

Articles