Enabling Technologies of IoT on Health Care

Authors

DOI:

https://doi.org/10.48001/978-81-966500-0-1-1

Keywords:

Human health, IoMT, Analytical Methods, Wearable Sensor System

Abstract

Human beings are highly stressed because of their profession, life style, food habits and environmental conditions. Due to these issues humans are facing chronic health issues like kidney, liver, pancreas failure, cardiovascular disease, changes in blood pressure and diabetes etc. The physical approaches are mainly used to monitor pressure, flow rate, temperature and organ imaging, while the chemical approach analyse the levels of different chemical analytes namely glucose, creatinine level, bilirubin, urea, WBC, RBC and Haemoglobin content etc., Both approaches are followed to determine the quality of human health through laboratories. In recent times, Internet of Things (IoT) is very helpful to monitor the human health, collection of data about the patient, storage, retrieval and usage of data. Internet of Medical Things (IoMT) is a novel emerging technology in the field of healthcare with a lot of scope for précised treatment.

Downloads

Download data is not yet available.

References

Alam, M. W., Sohag, M. H. A., Khan, A. H., Sultana, T., & Wahid, K. A. (2019). IoT-Based intelligent capsule endoscopy system: A technical review. Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions, 1–20. https://doi.org/10.1016/B978-0-12-815553-0.00001-X

Aleksandrowicz, A., & Leonhardt, S. (2007). Wireless and Non-contact ECG Measurement System– the “Aachen Smart Chair”. Acta Polytechnical, 47(4-5). https://doi.org/10.14311/974

Beevers, G., Lip, G. Y., & O’Brien, E. (2001). ABC of hypertension: The pathophysiology of hypertension. British Medical Journal, 322(7291), 912-916.

Broyles, J. R., Cochran, J. K., & Montgomery, D. C. (2010). A statistical Markov chain approximation of transient hospital inpatient inventory. European Journal of Operational Research, 207(3), 1645–1657. https://doi.org/10.1016/j.ejor.2010.06.021

Chamadiya, B., Wagner, M., Wondrak, W., & Hofmann, U. G. (2010). Active passenger safety by Intelligent textile. 7Th International Conference on Wearable Micro and Nano Technologies for Personalized Health.

Chamadiya, B., Mankodiya, K., Wagner, M., Nasreddine, R. B., & Hofmann, U. G. (2011). Non-contact, non-obtrusive electrocardiography in clinical environements. 2011 5th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, PervasiveHealth 2011, 101–106. https://doi.org/10.4108/icst.pervasivehealth.2011.246051

Chen, W., Dols, S., Oetomo, S. B., & Feijs, L. (2011). Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors. Proceedings of the 5th International ICST Conference on Body Area Networks, BodyNets 2010, 188–194. https://doi.org/10.1145/2221924.2221960

Famm, K., Litt, B., Tracey, K. J., Boyden, E. S., & Slaoui, M. (2013). Drug discovery: A jump-start for electroceuticals. Nature, 496(7444), 159–161. https://doi.org/10.1038/496159a

Gallacher, K., Morrison, D., Jani, B., Macdonald, S., May, C. R., Montori, V. M., Erwin, P. J., Batty, G. D., Eton, D. T., Langhorne, P., & Mair, F. S .(2013). Uncovering Treatment Burden as a Key Concept for Stroke Care: A Systematic Review of Qualitative Research. PLoS Medicine, 10(6). https://doi.org/10.1371/journal.pmed.1001473

Geetha, R., & Anitha, R. (2018). IoT enabled Life Style Assistance and Glucose Monitoring System for Diabetic Patients. www.tagajournal.com

Geoff Appelboom, B. T. B. (2014). Motion Sensors to Assess and Monitor Medical and Surgical Management of Parkinson’s Disease. International Journal of Physical Medicine Rehabilitation, 02(05). https://doi.org/10.4172/2329-9096.1000221

Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273. https://doi.org/10.1126/science.1223490

Hoy, M. B. (2016). Personal Activity Trackers and the Quantified Self. Medical Reference Services Quarterly, 35(1), 94–100. https://doi.org/10.1080/02763869.2016.1117300

Islam, S. M., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708. https://doi.org/10.1109/ACCESS.2015.2437951

Jeong, G., Yu, K., & Kim, N. (2005). Continuous Blood Pressure Monitoring using Pulse Wave Transit Time. Measurement, 2–5. http://2005.iccas.org/submission/paper/upload/ICCAS2005_jgy.pdf

Kakria, P., Tripathi, N. K., & Kitipawang, P. (2015). A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. International Journal of Telemedicine and Applications, 2015. https://doi.org/10.1155/2015/373474

Kamilaris, A., & Pitsillides, A. (2016). Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal, 3(6), 885-898. https://doi.org/10.1109/JIOT.2016.2600569

Kart, F., Miao, G., Moser, L. E., & Melliar-Smith, P. M. (2007). A distributed e-healthcare system based on the service oriented architecture. Proceedings- 2007 IEEE International Conference on Services Computing, SCC 2007, 652–659. https://doi.org/10.1109/SCC.2007.2

Labiris, N. R., & Dolovich, M. B. (2003). Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. British journal of clinical pharmacology, 56(6), 588–599.

Lee, C. K. M., Na, C. M., & Kit, N. C. (2015). IoT-based asset management system for healthcare-related industries. International Journal of Engineering Business Management, 7. https://doi.org/10.5772/61821

Lin, W. Y., Chou, W. C., Tsai, T. H., Lin, C. C., & Lee, M. Y. (2016). Development of a wearable instrumented vest for posture monitoring and system usability verification based on the technology acceptance model. Sensors (Switzerland), 16(12).https://doi.org/10.3390/s16122172

Lowe, S. A., & ÓLaighin, G. (2014). Monitoring human health behaviour in one’s living environment: A technological review. Medical Engineering and Physics, 36(2),147–168. https://doi.org/10.1016/j.medengphy.2013.11.010

Majmudar, M. D., Colucci, L. A., & Landman, A. B. (2015). The quantified patient of the future: Opportunities and challenges. Healthcare, 3(3), 153–156. https://doi.org/10.1016/j.hjdsi.2015.02.001

Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang, Z., & Deen, M. J. (2017). Smart homes for elderly healthcare-Recent advances and research challenges. Sensors (Switzerland), 17(11). https://doi.org/10.3390/s17112496

Meystre, S. (2005). The current state of telemonitoring: A comment on the literature. Telemedicine and e-Health, 11(1), 63–69. https://doi.org/10.1089/tmj.2005.11.63

Mohanapriya, S., & Vadivel, M. (2013). Automatic retrival of MRI brain image using multiqueries system. 2013 International Conference on Information Communication and Embedded Systems, ICICES 2013, 1099–1103. https://doi.org/10.1109/ICICES.2013.6508214

Mohanraj, S., & Sakthisudhan, K. (2019). An internet of things based smart wearable system for asthma patients. International Journal of Recent Technology and Engineering, 7(6), 604–607.

Mohd Adnan, M. R., Sarkheyli, A., Mohd Zain, A., & Haron, H. (2015). Fuzzy logic for modeling machining process: a review. Artificial Intelligence Review, 43(3), 345-379. https://doi.org/10.1007/s10462-012-9381-8

Mukhopadhyay, S. C. (2015). Wearable sensors for human activity monitoring: A review. IEEE Sensors Journal, 15(3), 1321–1330. https://doi.org/10.1109/JSEN.2014.2370945

Mukkamala, R., & al., E. (2017). Towards Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice Ramakrishna. IEEE Trans Biomed Eng., 62(8),1–10.

Nemati, E., Deen, M. J., & Mondal, T. (2012). A wireless wearable ECG sensor for long term applications. IEEE Communications Magazine, 50(1), 36–43. https://doi.org/10.1109/MCOM.2012.6122530

Parker, J., & DeLay, D. (2008). The future of the healthcare supply chain. Healthcare financial management : journal of the Healthcare Financial Management Association, 62(4), 66–69.

P.B., J., L.J., J., & S., B. (2012). Mining electronic health records: Towards better research applications and clinical care. Nature Reviews Genetics, 13(6), 395–405. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L51997008%5Cnhttp://dx.doi.org/10.1038/nrg3208%5Cnhttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=14710056&id=doi:10.1038%2Fnrg3208&atitle=Mining+electronic+health+records%3A+Towards+bett

Pramanik, P. K. D., Upadhyaya, B. K., Pal, S., & Pal, T. (2019). Internet of things, smart sensors, and pervasive systems: Enabling connected and pervasive health care. Healthcare Data Analytics and Management, 1–58. https://doi.org/10.1016/B978-0-12-815368-0.00001-4

Pretz, K. (2013). The next evolution of the internet. IEEE Magazine The institute, 50(5), 1–20. http://theinstitute.ieee.org/technology-focus/%20technology-topic/the-next-evolution-of-the-internet

Somayya Madakam, R, R., & Siddharth, T. (2015). Internet of Things (IoT): A Literature Review. Journal of Computer and Communications, 03, 164–173. https://doi.org/10.4236/jcc.2015.35021

Tripoliti, E. E., Tzallas, A. T., Tsipouras, M. G., Rigas, G., Bougia, P., Leontiou, M., Konitsiotis, S., Chondrogiorgi, M., Tsouli, S., & Fotiadis, D. I.(2013). Automatic detection of freezing of gait events in patients with Parkinson’s disease. Computer Methods and Programs in Biomedicine, 110(1), 12–26. https://doi.org/10.1016/j.cmpb.2012.10.016

Tung, C. E., Su, D., Turakhia, M. P., & Lansberg, M. G. (2015). Diagnostic yield of extended cardiac patch monitoring in patients with stroke or TIA. Frontiers in Neurology, 6(JAN). https://doi.org/10.3389/fneur.2014.00266

van Uem, J. M., Maier, K. S., Hucker, S., Scheck, O., Hobert, M. A., Santos, A. T., Fagerbakke, Ø., Larsen, F., Ferreira, J. J., & Maetzler, W. (2016). Twelve-week sensor assessment in Parkinson’s disease: Impact on quality of life. Movement Disorders, 31(9), 1337–1338. https://doi.org/10.1002/mds.26676

Wang, P., Wang, J. G., Shi, X. B., & He, W. (2005). The research of telemedicine system based on embedded computer. Annual International Conference of the IEEE Engineering in Medicine and Biology- Proceedings, 7 VOLS, 114–117. https://doi.org/10.1109/iembs.2005.1616355

Wang, Z., Yang, Z., & Dong, T. (2017). A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors (Switzerland), 17(2). https://doi.org/10.3390/s17020341

Y., A., & S., K. (2017). Biosignal monitoring using wearables: Observations and opportunities. Biomedical Signal Processing and Control, 38, 22–33. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L616162512%0Ahttp://dx.doi.org/10.1016/j.bspc.2017.03.011

Yang, C. C., & Hsu, Y. L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors, 10(8), 7772–7788. https://doi.org/10.3390/s100807772

Downloads

Published

2024-10-21

How to Cite

Allwin Ebinesar Jacob Samuel Sehar, Ramya D L, Shobha G, & Kavya M V. (2024). Enabling Technologies of IoT on Health Care. QTanalytics Publication (Books), 1–27. https://doi.org/10.48001/978-81-966500-0-1-1