The Role of AI and IoT in Seed Harvest and Agriculture Biotechnology
DOI:
https://doi.org/10.48001/978-81-966500-0-1-2Keywords:
Artificial Intelligence (AI), Internet of Things (IoT), Precision Farming, Seed Harvest, Sustainable Agriculture, Crop MonitoringAbstract
The integration of Artificial Intelligence (AI) and the Internet of Things (IoT) is revolutionizing agriculture, particularly in seed harvest and biotechnology. These technologies enhance precision farming by offering data-driven solutions for crop monitoring, disease detection, and resource management. This chapter explores how AI and IoT optimize seed harvest, improve crop yields, and promote sustainable farming. AI analyzes data on soil health, weather, and crops, aiding better decisions in planting, irrigation, and fertilization, while IoT devices provide real-time environmental data. The synergy between AI and IoT improves resource allocation and crop management. Examples from the Netherlands and India demonstrate their success in boosting yields and controlling pests. Despite challenges like high costs and technical expertise, ongoing advancements will support wider adoption. In conclusion, AI and IoT significantly improve agricultural efficiency, productivity, and sustainability, contributing to global food security.
Downloads
References
Baylis, A. (2017). Advances in precision farming technologies for crop protection. Outlooks on Pest Management, 28(4), 158–161. https://doi.org/10.1564/v28_aug_04
Belal, A. A., EL-Ramady, H., Jalhoum, M., Gad, A., & Mohamed, E. S. (2021). Precision Farming Technologies to Increase Soil and Crop Productivity. Springer Water,117–154. https://doi.org/10.1007/978-3-030-78574-1_6
Brazeau, M. (2018). Fighting weeds: Can we reduce, or even eliminate, herbicides by utilizing robotics and AI. Genetic Literacy Project, North Wales.
Chang, D. H., & Islam, S. (2000). Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sensing of Environment, 74(3), 534-544. https://doi.org/10.1016/S0034-4257(00)00144-9
Dai, X., Huo, Z., & Wang, H. (2011). Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Research, 121(3), 441–449.https://doi.org/10.1016/j.fcr.2011.01.016
Datta, A., Ullah, H., Tursun, N., Pornprom, T., Knezevic, S. Z., & Chauhan, B. S. (2017). Managing weeds using crop competition in soybean [Glycine max (L.) Merr.] Crop Protection, 95, 60–68. https://doi.org/10.1016/j.cropro.2016.09.005
Eli-Chukwu, N. C. (2019). Applications of Artificial Intelligence in Agriculture: A Review. Engineering, Technology and Applied Science Research, 9(4), 4377–4383. https://doi.org/10.48084/etasr.2756
Elshorbagy, A., & Parasuraman, K. (2008). On the relevance of using artificial neural networks for estimating soil moisture content. Journal of Hydrology, 362(1-2), 1-18. https://doi.org/10.1016/j.jhydrol.2008.08.012
Ghosh, A., & Roy, P. (2021). AI Based Automated Model for Plant Disease Detection, a Deep Learning Approach. Communications in Computer and Information Science, 1406 CCIS, 199–213. https://doi.org/10.1007/978-3-030-75529-4_16
Gómez-Chabla, R., Real-Avilés, K., Morán, C., Grijalva, P., & Recalde, T. (2019). IoT Applications in Agriculture: A Systematic Literature Review. Advances in Intelligent Systems and Computing, 901, 68–76. https://doi.org/10.1007/978-3-030-10728-4_8
He, Y., & Song, H. (2005). Crop nutrition diagnosis expert system based on artificial neural networks. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 21(1), 110–113.
Karimi, Y., Prasher, S. O., Patel, R. M., & Kim, S. H. (2006). Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture, 51(1-2), 99–109. https://doi.org/10.1016/j.compag.2005.12.001
Levine, E. R., Kimes, D. S., & Sigillito, V. G. (1996). Classifying soil structure using neural networks. Ecological Modelling, 92(1), 101–108. https://doi.org/10.1016/0304-3800(95)00199-9
Li, M., & Yost, R. S. (2000). Management-oriented modeling: Optimizing nitrogen management with artificial intelligence. Agricultural Systems, 65(1), 1–27. https://doi.org/10.1016/S0308-521X(00)00023-8
López, E. M., García, M., Schuhmacher, M., & Domingo, J. L. (2008). A fuzzy expert system for soil characterization. Environment International, 34(7), 950–958. https://doi.org/10.1016/j.envint.2008.02.005
M. Bilgili. (2011). The use of artificial neural network for forecasting the monthly mean soil temperature in Adana, Turkey. Turkish Journal of Agriculture and Forestry,35(1), 83–93.
M. Khan, N. H. (2002). Wheat crop yield loss assessment due to weeds. Sarhad Journal of Agriculture (Pakistan), 18(4), 449–453.
Montas, H., & Madramootoo, C. A. (1992). A decision support system for soil conservation planning. Computers and Electronics in Agriculture, 7(3), 187–202. https://doi.org/10.1016/S0168-1699(05)80019-5
Mruthul, T., Halepyati, A. S., & Chittapur, B. M. (2015). Chemical weed management in sesame (Sesamum indicum L.). Karnataka Journal of Agricultural Sciences, 28(2), 151–154.
Papageorgiou, E. I., Markinos, A. T., & Gemtos, T. A. (2011). Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Applied Soft Computing Journal, 11(4), 3643–3657. https://doi.org/10.1016/j.asoc.2011.01.036
Rao, A. N., Wani, S. P., & Ladha, J. K. (2014). Weed management research in India an analysis of past and outlook for future. DWR Publication No. 18. In: Souvenir (1989-2014) Directorate of Weed Research, 1–26. http://oar.icrisat.org/8592/
Strickland, R. M., Ess, D. R., & Parsons, S. D. (1998). Precision farming and precision pest management: The power of new crop production technologies. Journal of Nematology, 30(4), 431–435.
Swanton, C. J., Harker, K. N., & Anderson, R. L. (1993). Crop Losses Due to Weeds in Canada. WeedTechnology, 7(2), 537–542. https://doi.org/10.1017/s0890037x00028049
Tajik, S., Ayoubi, S., & Nourbakhsh, F. (2012). Prediction of soil enzymes activity by digital terrain analysis: Comparing artificial neural network and multiple linear regression models. Environmental Engineering Science, 29(8), 798–806. https://doi.org/10.1089/ees.2011.0313
Velayudhan, N. K., Pradeep, P., Rao, S. N., Devidas, A. R., & Ramesh, M. V. (2022). IoT-Enabled Water Distribution Systems- A Comparative Technological Review. IEEEAccess, 10, 101042–101070. https://doi.org/10.1109/ACCESS.2022.3208142
Wang, X., Zhang, M., Zhu, J., & Geng, S. (2008). Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). International Journal of Remote Sensing, 29(6), 1693–1706. https://doi.org/10.1080/01431160701281007
Wheaton, E., & Kulshreshtha, S. (2017). Environmental sustainability of agriculture stressed by changing extremes of drought and excess moisture: A conceptual review. Sustainability (Switzerland), 9(6). https://doi.org/10.3390/su9060970
Yang, C. C., Prasher, S. O., Landry, J. A., & Ramaswamy, H. S. (2002). Development of neural networks for weed recognition in corn fields. Transactions of the American Society of Agricultural Engineers, 45(3), 859–864. https://doi.org/10.13031/2013.8854
Zhao, Z., Chow, T. L., Rees, H. W., Yang, Q., Xing, Z., & Meng, F. R. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture, 65(1), 36–48. https://doi.org/10.1016/j.compag.2008.07.008