Smart Healthcare: Integrating Artificial Intelligence for Better Patient Outcomes
DOI:
https://doi.org/10.48001/978-81-966500-0-1-4Keywords:
Machine Learning (ML), Genomic Analysis, Pathology, Disease control systemAbstract
The merging of artificial intelligence (AI) with healthcare in recent years has signaled the beginning of a revolutionary period in patient care and medical practice. The integration of AI technologies in the context of smart healthcare is examined in this chapter, with a focus on how these technologies might improve patient outcomes. We start by describing the basic ideas of artificial intelligence (AI) and how they relate to many aspects of healthcare, such as treatment planning, diagnosis, customized medicine, and operational effectiveness. The topic also includes the latest developments in artificial intelligence (AI) technologies, including predictive analytics, natural language processing, and machine learning algorithms, as well as their useful applications in healthcare environments. A thorough analysis of case studies demonstrates how AI-driven solutions are increasing the precision of diagnoses, enhancing treatment plans, and simplifying administrative procedures. The chapter also discusses the difficulties and constraints associated with integrating AI, such as the need for strong legal frameworks and validation, algorithmic bias, and data privacy issues. We can provide more proactive and individualized patient care by incorporating AI into healthcare systems, which will eventually improve patient outcomes and streamline the delivery of healthcare. This chapter offers a nuanced perspective on the potential of artificial intelligence (AI) to alter healthcare practices through a thorough analysis of current advances and empirical data. It also highlights future prospects for research and development in the field of smart healthcare.
Downloads
References
Alandjani, G. (2023). Integrating AI with Green Internet of Things in Healthcare for Achieving UN’s SDGs. Tuijin Jishu/Journal of Propulsion Technology, 44(3), 513-521. https://doi.org/10.52783/tjjpt.v44.i3.330
Alanzi, T., Alsalem, A. A., Alzahrani, H., Almudaymigh, N., Alessa, A., Mulla, R., AlQah tani, L., Bajonaid, R., Alharthi, A., Alnahdi, O., & Alanzi, N. (2023). AI-Powered Mental Health Virtual Assistants Acceptance: An Empirical Study on Influencing Factors Among Generations X, Y, and Z. Cureus. https://doi.org/10.7759/cureus.49486
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H. A., Al Yami, M. S., Al Harbi, S., & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04698-z
Baker, A., Perov, Y., Middleton, K., Baxter, J., Mullarkey, D., Sangar, D., Butt, M., DoRosario, A., & Johri, S. (2020). A Comparison of Artificial Intelligence and Human Doctors for the Purpose of Triage and Diagnosis. Frontiers in Artificial Intelligence, 3. https://doi.org/10.3389/frai.2020.543405
Berbís, M. A., McClintock, D. S., Bychkov, A., Van der Laak, J., Pantanowitz, L., Lennerz, J. K., Cheng, J. Y., Delahunt, B., Egevad, L., Eloy, C., Farris, A. B., Fraggetta, F., García del Moral, R., Hartman, D. J., Herrmann, M. D., Hollemans, E., Iczkowski,
K. A., Karsan, A., Kriegsmann, M., … Shen, J. (2023). Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade. eBioMedicine, 88. https://doi.org/10.1016/j.ebiom.2022.104427
Cesario, A., Simone, I., Paris, I., Boldrini, L., Orlandi, A., Franceschini, G., Lococo, F., Bria, E., Magno, S., Mulè, A., Santoro, A., Damiani, A., Bianchi, D., Picchi, D., Rasi, G., Daniele, G., Fabi, A., Sergi, P., Tortora, G., … Scambia, G. (2021). Development of a digital research assistant for the management of patients’ enrollment in oncology clinical trials within a research hospital. Journal of Personalized Medicine, 11(4). https://doi.org/10.3390/jpm11040244
Chan, C. Y. T., & Petrikat, D. (2023). Strategic Applications of Artificial Intelligence in Healthcare and Medicine. Journal of Medical and Health Studies, 4(3), 58–68. https://doi.org/10.32996/jmhs.2023.4.3.8
Chauhan, C., & Gullapalli, R. R. (2021). Ethics of AI in Pathology: Current Paradigms and Emerging Issues. American Journal of Pathology, 191(10), 1673–1683. https://doi.org/10.1016/j.ajpath.2021.06.011
Chioma Anthonia Okolo, Tolulope Olorunsogo, & Oloruntoba Babawarun. (2024). A comprehensive review of AI applications in personalized medicine. International Journal of Science and Research Archive, 11(1), 2544–2549. https://doi.org/10.30574/ijsra.2024.11.1.0338
Drukker, L., Noble, J. A., & Papageorghiou, A. T. (2020). Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound in Obstetrics and Gynecology, 56(4), 498–505. https://doi.org/10.1002/uog.22122
Harry, A. (2023). The Future of Medicine: Harnessing the Power of AI for Revolutionizing Healthcare. International Journal of Multidisciplinary Sciences and Arts, 2(1), 36–47. https://doi.org/10.47709/ijmdsa.v2i1.2395
Khalifa, M., & Albadawy, M. (2024). AI in diagnostic imaging: Revolutionising accuracy and efficiency. Computer Methods and Programs in Biomedicine Update, 5. https://doi.org/10.1016/j.cmpbup.2024.100146
Lin, Q., Tam, P. K. H., & Tang, C. S. M. (2023). Artificial intelligence-based approaches for the detection and prioritization of genomic mutations in congenital surgical diseases. Frontiers in Pediatrics, 11. https://doi.org/10.3389/fped.2023.1203289
Manickam, P., Mariappan, S. A., Murugesan, S. M., Hansda, S., Kaushik, A., Shinde, R., & Thipperudraswamy, S. P. (2022). Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors, 12(8). https://doi.org/10.3390/bios12080562
Mehta, V. (2023). Artificial Intelligence in Medicine: Revolutionizing Healthcare for Improved Patient Outcomes. Journal of Medical Research and Innovation, 7(2).https://doi.org/10.32892/jmri.292
Muhammad, G., & Alhussein, M. (2021). Convergence of Artificial Intelligence and Internet of Things in Smart Healthcare: A Case Study of Voice Pathology Detection. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3090317
Pinto-Coelho, L. (2023). How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering, 10(12). https://doi.org/10.3390/bioengineering10121435
Schüffler, P., Steiger, K., & Weichert, W. (2023). How to use AI in pathology. Genes Chromosomes and Cancer, 62(9), 564–567. https://doi.org/10.1002/gcc.23178
Seyhan, A. A., & Carini, C. (2019). Are innovation and new technologies in precision medicine paving a new era in patients centric care Journal of Translational Medicine, 17(1). https://doi.org/10.1186/s12967-019-1864-9
Sim, S., & Cho, M. (2023). Convergence model of AI and IoT for virus disease control system. Personal and Ubiquitous Computing, 27(3), 1209–1219. https://doi.org/10.1007/s00779-021-01577-6
Sun, G., & Zhou, Y. H. (2023). AI in healthcare: navigating opportunities and challenges in digital communication. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1291132
Tătaru, O. S., Vartolomei, M. D., Rassweiler, J. J., Virgil, O., Lucarelli, G., Porpiglia, F., Amparore, D., Manfredi, M., Carrieri, G., Falagario, U., Terracciano, D., de Cobelli, O., Busetto, G. M., Del Giudice, F., & Ferro, M. (2021). Artificial intelligence and machine learning in prostate cancer patient management—current trends and future perspectives. Diagnostics, 11(2). https://doi.org/10.3390/diagnostics11020354
Xu, J., Yang, P., Xue, S., Sharma, B., Sanchez-Martin, M., Wang, F., Beaty, K. A., Dehan, E., & Parikh, B. (2019). Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Human Genetics, 138(2), 109–124. https://doi.org/10.1007/s00439-019-01970-5