Metal contamination in traditionally used Medicinal plants: a serious threat in Murshidabad district, West Bengal, India

Authors

  • Pinaki Bose Department of Environmental Science, Sewnarayan Rameswar Fatepuria College Beldanga, Murshidabad-742133, West Bengal, India

DOI:

https://doi.org/10.52756/ijerr.2018.v16.004

Keywords:

Arsenic, copper, iron, medicinal plants, Murshidabad

Abstract

Murshidabad district is one of the most highly Arsenic (As) prone areas of West Bengal, India. The predominantly rural population of this district greatly depends on traditionally used medicinal plants for treatment of various ailments and subjected to risk of arsenic contamination. The present study revealed that some naturally grown medicinal plants in this district were found to have the alarming level of concentration of arsenic and other metals (Fe, Cu) contamination. So, there should be raised more consciousness on the toxic metal contamination of medicinal plants specifically, collected from contaminated sites.

References

Abu-Darwish, M. S. (2009). Essential oils yield and heavy metals content of some aromatic medicinal plants grown in Ash-Shoubak region, south of Jordan. Advances in Environmental Biology. 3(3): 296-301.

Anonymous, (2009). Ayurvedic Pharmacopoeia of India, Part I. Vol. VI, New Delhi, Department of AYUSH, Government of India.

APHA. (1998). Standard methods for the examination of water and wastewater. 20th edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.

Baye, H. and Hymete, A. (2013). Levels of heavy metals in common medicinal plants collected from environmentally different sites. Middle East Journal of Scientific Research. 13: 938- 943.

Begum, H. A., Hamayun, M., Zaman, K., Shinwari, Z. K. and Hussain, A. N. W. A. R. (2017). Heavy metal analysis in frequently consumable medicinal plants of Khyber Paktunkhwa, Pakistan. Pak. J. Bot. 49(3): 1155-1160.

Bhattacharya, P., Samal, A. C., Majumdar, J., and Santra, S. C. (2009). Transfer of arsenic from groundwater and paddy soil to rice plant (Oryza sativa L.): a micro level study in West Bengal, India. World Journal of Agricultural Sciences. 5(4): 425-431.

Chakraborti, D., Rahman, M. M., Paul, K., Chowdhury, U. K., Sengupta, M. K., Lodh, D. and Mukherjee, S. C. (2002). Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta. 58(1): 3-22.

Chowdhury, U. K., Biswas, B. K., Dhar, R. K., Samanta, G., Mandal, B. K., Chowdhury, T. R. and Roy, S. (1999). Groundwater arsenic contamination and suffering of people in Bangladesh. Arsenic Exposure and Health Effects. III : 165-182.

Das, D., Samanta, G., Mandal, B. K., Chowdhury, T. R., Chanda, C. R., Chowdhury, P. P. and Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environmental geochemistry and Health. 18(1): 5-15.

Das, H. K., Mitra, A. K., Sengupta, P. K., Hossain, A., Islam, F. and Rabbani, G. H. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environment International. 30(3): 383-387.

FAO, (1985). Water quality guidelines for maximum crop production. Food and Agricultural Organization/ un,www.fao.org/docrep/T0551E.2006/9/13 Garbisu, C. and Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology. 77(3): 229-236.

Garg, N. and Singla, P. (2011). Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environmental Chemistry Letters. 9(3): 303-321.

Ghosh, S. and Singh, M. (2015). Minerals and heavy metals contents of Glycyrrhiza glabra l. and Andrographis paniculata (burm. f.) from Meerut, India. International Journal of Pharma and Bio Sciences. 6(4): 40-45.

Hussain, I., Ullah, R., Khurram, M., Ullah, N., Baseer, A., Khan, F. A. and Khan, J. (2011). Heavy metals and inorganic constituents in medicinal plants of selected districts of Khyber Pakhtoonkhwa, Pakistan. African Journal of Biotechnology. 10(42): 8517-8522.

Issazadeh, K., Massiha, A. and Khoshkholgh Pahlaviani, M. R. M. (2012). Minimum inhibitory concentration (MIC) of Myrtus communis extract and nystatin on clinical isolated and standard strains of Candida albicans. J. Appl. Environ. Biol. Sci. 2: 466-468.

Jena, V. K., Gupta, S., Patel, K. S. and Patel, S. C. (2007). Evaluating heavy metals contents in medicinal plant Mentha longifolia. Journal of the Chinese Chemical Society. 54: 339-343.

Joshi, K., Chavan, P., Warude, D. and Patwardhan, B. (2004). Molecular markers in herbal drug technology. Current Science. 159-165.

Lu, Y., Adomako, E. E., Solaiman, A. R. M., Islam, M. R., Deacon, C., Williams, P. N. and Meharg, A. A. (2009). Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice. Environmental Science and Technology. 43(6): 1724-1729.

Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y. and Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature. 409(6820): 579.

Mahimairaja, S., Bolan, N. S., Adriano, D. C. and Robinson, B. (2005). Arsenic contamination and its risk management in complex environmental settings. Advances in Agronomy. 86: 1-82.

Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R. and Das, D. (1996). Arsenic in groundwater in seven districts of West Bengal, India–the biggest arsenic calamity in the world. Current Science. 976-986.

Mittal, P. (2014). Challenges in Managing the Blood Supply Chain, from Donor to Patient together with the Hospital. Journal of Business Management and Information Systems. 1(1): 37–47.

Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S. and Shaheen, Z. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of Pharmaceutical Sciences and Research. 7(3): 89.

Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G. and Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry. 15(4): 403-413.

Nwoko, C. O. and Mgbeahuruike, L. (2011). Heavy metal contamination of ready-to-use herbal remedies in south eastern Nigeria. Pak. J. Nutr. 10(10): 959-964.

Pala, N. A., Negi, A. K. and Todaria, N. P. (2010). Traditional uses of medicinal plants of Pauri Garhwal, Uttrakhand. Nature and Science. 8(6): 57-61.

Pereira, S. F. P., Ferreira, S. L. C., Oliveira, G. R., Palheta, D. C. and Barros, B. C. (2008). Spectrophotometric determination of arsenic in soil samples using 2-(5-bromo-2- pyridylazo)-5-di-ethylaminophenol (BrPADAP). Eclética Química. 33(3): 23-28.

Planning Commission. (2000). Report of the task force on conservation and sustainable use of medicinal plants. Planning Commission, New Delhi.[http://planningcommission. nic. in/aboutus/taskforce/tsk_medi. pdf].

Pyne, S. and Santra, S. C. (2017). Accumulation of Arsenic, Copper and Iron in common Medicinal Plants of Murshidabad district, West Bengal, India. Int. J. Exp. Res. Rev. 9: 54- 62.

Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A. and Miah, M. A. M. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere. 69(6): 942-948.

Roychowdhury, T., Tokunaga, H., Uchino, T. and Ando, M. (2005). Effect of arseniccontaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere. 58(6): 799-810.

Roychowdhury, T., Uchino, T., Tokunaga, H. and Ando, M. (2002). Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food and Chemical Toxicology. 40(11): 1611-1621.

Samal, A. C. (2005). An investigation on accumulation of arsenic in ecosystem of Gangetic West Bengal and assessment of potential health risk. Ph. D Thesis, University of Kalyani. Singh, K. P., Bhattacharya, S. and Sharma, P. (2014). Assessment of heavy metal contents of some Indian medicinal plants. J. Agric. Environ. Sci. 14: 1125-1129.

Tripathi, P., Dwivedi, S., Mishra, A., Kumar, A., Dave, R., Srivastava, S. and Tripathi, R. D. (2012). Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants. Environmental Monitoring and Assessment. 184(5): 2617-2631.

Welsch, E. P., Crock, J. G. and Sanzolone, R. (1990). Trace level determination of arsenic and selenium using continuous flow hydride generation atomic absorption spectrophotometry (HG-AAS). In: Arbogast, B. F. (ed). Quality Assurance Manual for the Branch of Geochemistry, Open-File Rep. 90- 0668, US Geological Survey, Reston, VA, Pp. 38-45.

WHO. (1989). Evaluation of certain food additives and contaminants, WHO Technical Report Series 776, World Health Organization, Geneva. Yoon, J., Cao, X., Zhou, Q. and Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment. 368(2-3): 456-464.

Downloads

Published

2018-08-30

How to Cite

Bose, P. (2018). Metal contamination in traditionally used Medicinal plants: a serious threat in Murshidabad district, West Bengal, India. International Journal of Experimental Research and Review, 16, 26–39. https://doi.org/10.52756/ijerr.2018.v16.004

Issue

Section

Articles