A review on phyto-remediation by aquatic macrophytes: A natural promising tool for sustainable management of ecosystem

Authors

  • Aloke Saha Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal, India https://orcid.org/0000-0001-9985-3481
  • Pronoy Mukherjee Department of Zoology, Rishi Bankim Chandra College, Naihati, W.B., India
  • Koyel Roy Department of Zoology, Krishnagar Government College, Krishnagar, West Bengal, India
  • Koushik Sen Department of Zoology, Jhargram Raj College, Jhargram, West Bengal, India
  • Tanmay Sanyal Department of Zoology, Krishnagar Government College, Krishnagar, West Bengal, India https://orcid.org/0000-0002-0046-1080

DOI:

https://doi.org/10.52756/ijerr.2022.v27.002

Keywords:

Bioremediation, heavy metals, macrophytes, phyto-extraction, phyto-remediation

Abstract

Heavy metal pollution is a significant source of pollution in the environment. Heavy metal contamination in aquifers endangers public health and the freshwater and marine ecosystems. Traditional wastewater treatment methods are mainly expensive, ecologically damaging, ineffective, and take much time. Phyto-remediation is a plant-based technique that gained popularity by discovering heavy metal accumulating plants that can accumulate, transport, and consolidate enormous quantities of certain hazardous contaminants. This is a low-cost sustainable evolving technique featuring long-term utility. Several terrestrial and aquatic vegetation have now been examined for their ability to repair polluted soils and streams. Several submerged plants have already been discovered to remove harmful pollutants such as Zn, As, Cu, Cd, Cr, Pb & Hg. The most important part of effective phyto-remediation is selecting and choosing effective plant species. Aquatic macrophytes have high effectiveness for removing chemical contaminates. Watercress, hydrilla, alligator weed, pennywort, duckweed plants, water hyacinth are examples of aquatic macrophytes. Several macrophytes' metal absorption capability and procedures have now been explored or analyzed. Most of these research demonstrated that macrophytes had bioremediation capability. The bioremediation capability of macrophytes can be increased even more by employing novel bioremediation techniques. To demonstrate the extensive application of phyto-remediation, a comprehensive summary assessment of the usage of macrophytes for phyto-remediation is compiled.

References

Abdallah, M. A. M. (2012). Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Cera-tophyll umdemersum and Lemna gibba L. Environmental Technology. 33(14): 1609-1614.

Abhilash, P. C., Jamil, S., & Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances. 27(4): 474-488.

Afzal, M., Khan, Q. M., & Sessitsch, A. (2014). Endophytic bacteria: Prospects and applications for the phytoremedia-tion of organic pollutants. Chemosphere.117: 232-242.

Aguilar, M. J. (2009). Olive oil mill wastewater for soil nitrogen and carbon conservation. Journal of Environmental Management. 90(8): 2845-2848.

Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials. 323: 274-298.

Akpor, O.B., & Muchie, M. (2010). Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. International Journal of Physical Sciences. 5: 1807-1817.

Al-Alawy, A. F., & Salih, M. H. (2017). Comparative Study between Nano-filtration and Reverse Osmosis Membranes for the Removal of Heavy Metals from Electroplating Wastewater. Journal of Engineering. 23(4): 1-21.

Alam, B., Chatterjee, A.K., & Duttagupta, S. (1995). Bioac-cumulation of Cd(II) by water lettuce. Pollut. Res. 14: 59-64.

Ali, H., Khan, E., & Sajad, M.A. (2013). Phytoremediation of heavy metals- Concepts and applications. Chemosphere. 91(7): 869-881.

An, B., Lee, C. G., Song, M. K., Ryu, J. C., Lee, S., Park, S. J., Zhao, D., Kim, S. B., Park, C., Lee, S. H., Hong, S. W., & Choi, J. W. (2015). Applicability and toxicity evaluation of an adsorbent based on jujube for the removal of toxic heavy metals. Reactive and Functional Polymers. 93: 138-147.

Anderson, T. A., Guthrie, E. A., & Walton, B. T. (1993). Bio-remediation in the rhizosphere. Environmental Science and Technology. 27(13): 2630-2636.

Arreghini, S., de Cabo, L., & Fabrizio de Iorio, A. (2006). Phy-toremediation of two types of sediment contaminated with Zn by Schoenoplectus americanus. International Journal of Phytoremediation. 8(3): 223-232.

Ashraf, S., Afzal, M., Naveed, M., Shahid, M., & Ahmad Zahir, Z. (2018). Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. International Journal of Phytoremedia-tion. 20(2): 121-128.

Axtell, N. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology. 89(1): 41-48.

Bala, R., & Thukral, A. K. (2011). Phytoremediation of CR(VI) by Spirodela polyrrhiza (L.) Schleiden Employing Reducing and Chelating Agents. International Journal of Phytoremediation.13(5): 465-491.

Benavides, L.C.L., Pinilla, L.A.C., Serrezuela, R.R., & Serre-zuela, W.F.R. (2018). Extraction in Laboratory of Heavy Metals Through Rhizofiltration using the Plant Zea mays (maize). Int. J. Appl. Environ. Sci.13: 9-26.

Bennett, L. E., Burkhead, J. L., Hale, K. L., Terry, N., Pilon, M., & Pilon-Smits, E. A. (2003). Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality. 32(2): 432-440.

Blaylock, M.J., & Huang, J.W. (2000). Phytoextraction of met-als I Raskin and BD Ensley (Eds) Phytoremediation of Toxic Metals Using Plants to Clean up the Environment John Wiley & Sons, Inc. New York. Pp. 53-70.

Bokhari, S. H., Ahmad, I., Mahmood-Ul-Hassan, M., & Mohammad, A. (2015). Phytoremediation potential of Lemna minor L. for heavy metals. International Journal of Phytoremediation.18(1): 25-32.

Brooks, R. R., & Robinson, B. H. (1998).Aquatic phytoreme-diation by accumulator plants. Plants that hy-peraccumulate heavy metals: their role in phytoreme-diation, microbiology, archaeology, mineral exploration and phytomining. Pp. 203-226.

Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nano-structured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety. 148: 702-712.

Caicedo, J. (2000). Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research. 34(15): 3829-3835.

Calzadilla, A., Rehdanz, K., & Tol, R. S. (2010). Water scarcity and the impact of improved irrigation management: a computable general equilibrium analysis. Agricultural Eco-nomics. 42(3): 305-323.

Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere. 48(7): 653-663.

Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitor-ing: A review. Water Research. 95: 205-219.

CDC. (2016). Global WASH Fast Facts. Global Water, Sanita-tion, and Hygiene (WASH).

https://www.cdc.gov/healthywater/global/wash_statistics.html Accessed 26/02/2022.

Chandra, R., Kumar, V., Tripathi, S., & Sharma, P. (2018). Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecological Engineering. 111: 143-156.

Chen, B., Li, X., Tao, H., Christie, P., & Wong, M. (2003). The role of Arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere. 50(6): 839-846.

Chen, L., Gao, J., Zhu, Q., Wang, Y., & Yang, Y. (2018). Ac-cumulation and Output of Heavy Metals by the Invasive Plant Spartina alterniflora in a Coastal Salt Marsh. Pe-dosphere. 28(6): 884-894.

Cheraghi, M., Lorestani, B., Khorasani, N., Yousefi, N., & Karami, M. (2009). Findings on the Phytoextraction and Phytostabilization of Soils Contaminated with Heavy Met-als. Biological Trace Element Research.144(1-3): 1133-1141.

Cicero-Fernández, D., Peña-Fernández, M., Expósito-Camargo, J. A., & Antizar-Ladislao, B. (2016). Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments. International Journal of Phytoremediation.18(6): 575-582.

Coninx, L., Martinova, V., & Rineau, F. (2017). Mycorrhiza-assisted phytoremediation. Adv. Bot. Res. 83: 127-188.

Connell, D. W. (2018). Pollution in Tropical Aquatic Systems (1st ed.). CRC Press.

Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief re-view. Environmental Technology and Innovation. 8: 309-326.

Cundy, A., Bardos, R., Church, A., Puschenreiter, M., Friesl-Hanl, W., Müller, I., Neu, S., Mench, M., Witters, N., & Vangronsveld, J. (2013). Developing principles of sustain-ability and stakeholder engagement for “gentle” remedia-tion approaches: The European context. Journal of Envi-ronmental Management. 129: 283-291.

Czarnecki, S., & Düring, R. A. (2015). Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany. SOIL. 1(1): 23-33.

Darrah, P. R., Jones, D. L., Kirk, G. J. D., & Roose, T. (2006).Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. European Journal of Soil Science. 57(1): 13-25.

David, G., Blondeau, K., Schiltz, M., Penel, S., & Lewit-Bentley, A. (2003). YodA from Escherichia coli is a metal-binding, lipocalin-like protein. The Journal of Biological Chemistry. 278(44): 43728-43735.

Denny, H. J., & Wilkins, D. A. (1987). Zinc Tolerance In Betula sp.. Ii. Microanalytical Studies of Zinc Uptake into Root Tissues. New Phytologist. 106(3): 525-534.

Dinu, C., Gheorghe, S., Tenea, A. G., Stoica, C., Vasile, G.G., Popescu, R. L., Serban, E. A., & Pascu, L. F. (2021). Toxic Metals (As, Cd, Ni, Pb) Impact in the Most Common Me-dicinal Plant (Mentha piperita). International Journal of Environmental Research and Public Health.18(8): 3904.

Doty, S. L. (2008). Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist. 179(2): 318-333.

Eapen, S., Singh, S., & D’Souza, S. (2007). Advances in de-velopment of transgenic plants for remediation of xenobi-otic pollutants. Biotechnology Advances. 25(5): 442-451.

Ebel, A., Memmesheimer, M., Jakobs, H.J., & Feldmann, H. (2007). Advanced Air Pollution Models and Their Applica-tion to Risk and Impact Assessment. In: Ebel, A., and Davi-tashvili, T. (eds) Air, Water and Soil Quality Modelling for Risk and Impact Assessment. Springer, Dordrecht.

Ebere-Enyoh, C., Wirnkor Verla, A., & Jane Egejuru, N. (2018). pH Variations and Chemometric Assessment of Borehole Water in Orji, Owerri Imo State, Nigeria. Journal of Environmental Analytical Chemistry. 5: 2.

Eid, M.E., Gala, T.M., Sewelam, N.A., Talha, N.I., & Abdallah, S.M. (2020). Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as a contamination indicator: A comparative assessment. Environmental Science and Pollution Research. 27(11): 12138-12151.

El-Gendy, A. S., Biswas, N., & Bewtra, J. K. (2006). Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system. Water Environment Research: a research publication of the Water Envi-ronment Federation. 78(9): 951-964.

Emamverdian, A., Ding, Y., & Mokhberdoran, F. (2020). The role of salicylic acid and gibberellin signaling in plant re-sponses to abiotic stress with an emphasis on heavy metals. Plant Signaling and Behavior. 15(7): 1777372.

Ensley, B.D. (2000). Rationale for the use of phytoreme-diation. In: Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York. Pp. 205-210.

Erakhrumen, A.A. (2007). Phytoremediation: an environmen-tally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Reviews. 2(7): 151-156.

Etim, E.E. (2012). Review: phytoremediation and its mecha-nisms. Int. J. Environ. Bioenergy. 2(3): 120-136.

Fang, T., Bao, S., Sima, X., Jiang, H., Zhu, W., & Tang, W. (2016). Study on the application of integrated eco-engineering in purifying eutrophic river waters. Ecological Engineering. 94: 320-328.

Fang, Y. Y., Yang, X. E., Chang, H. Q., Pu, P. M., Ding, X. F., & Rengel, Z. (2007). Phytoremediation of Nitrogen-Polluted Water Using Water Hyacinth. Journal of Plant Nutrition. 30(11): 1753-1765.

Farid, M., Ali, S., Shakoor, M., Bharwana, S., Rizvi, H., Ehsan, S., Tauqeer, H. M., Iftikhar, U., & Hannan, F. (2013). EDTA assisted phytoremediation of Cadmium, Lead and Zinc. International Journal of Agronomy and Plant Production. 4: 2833-2846.

Fritioff, S., & Greger, M. (2003). Aquatic and Terrestrial Plant Species with Potential to Remove Heavy Metals from Storm water. International Journal of Phytoremediation. 5(3): 211-224.

Galal, T. M., Eid, E. M., Dakhil, M. A., & Hassan, L. M. (2018). Bioaccumulation and rhizo-filtration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. International Journal of Phytoremediation. 20(5): 440-447.

Gall, J. E., Boyd, R. S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Envi-ronmental Monitoring and Assessment. 187(4): 201.

Gallon, C., Munger, C., Prémont, S., & Campbell, P. G. C. (2004). Hydroponic Study of Aluminum Accumulation by Aquatic Plants: Effects of Fluoride and pH. Water, Air, & Soil Pollution.153(1-4): 135-155.

Gerhardt, K. E., Gerwing, P. D., & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant science: an International Jour-nal of Experimental Plant Biology. 256: 170-185.

Ghosh, M., & Singh, S. (2005). A review on phytoremediation of heavy metals and utilization of it’s byproducts. Asian J. Energy Environ. 6: 18.

Giraldo, E., & Garzón, A. (2002). The potential for water hya-cinth to improve the quality of Bogota River water in the Muña Reservoir: comparison with the performance of waste stabilization ponds. Water Science and Technology: a Journal of the International Association on Water Pollution Research. 45(1): 103-110.

Gonçalves, A. L., Pires, J. C., & Simões, M. (2017).A review on the use of microalgal consortia for wastewater treat-ment.Algal Research. 24: 403-415.

González-González, A., Cuadros, F., Ruiz-Celma, A., & López-Rodríguez, F. (2014). Influence of heavy metals in the biomethanation of slaughterhouse waste. Journal of Cleaner Production. 65: 473-478.

Gopal, B. (2003). Perspectives on wetland science, application and policy. Hydrobiologia. 490: 1-10.

Gorito, A. M., Ribeiro, A. R., Almeida, C., & Silva, A. M. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution. 227: 428-443.

Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot, G., Tiliacos, N., Roche, N., & Doumenq, P. (2017). From the conventional biological wastewater treat-ment to hybrid processes, the evaluation of organic micro pollutant removal: A review. Water research.111: 297-317.

Guittonny-Philippe, A., Petit, M. E., Masotti, V., Monnier, Y., Malleret, L., Coulomb, B., Combroux, I., Baumberger, T., Viglione, J., & Laffont-Schwob, I. (2015). Selection of wild macrophytes for use in constructed wetlands for phytore-mediation of contaminant mixtures. Journal of Environ-mental Management.147: 108-123.

Gunnarsson, C. C., & Petersen, C. M. (2007). Water hyacinths as a resource in agriculture and energy production: a litera-ture review. Waste management (New York, N.Y.). 27(1): 117-129.

Hadi, F., Ali, N., & Ahmad, A. (2014). Enhanced Phytoreme-diation of Cadmium-Contaminated Soil by Parthenium hysterophorus Plant: Effect of Gibberellic Acid (GA3) and Synthetic Chelator, Alone and in Combinations. Bioreme-diation Journal. 18(1): 46-55.

Hammouda, O., Gaber, A., & Abdel-Raouf, N. (1995).Microalgae and wastewater treat-ment. Ecotoxicology and Environmental Safety. 31(3): 205-210.

Han, Z., Guo, Z., Zhang, Y., Xiao, X., Xu, Z., & Sun, Y. (2018). Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phy-toremediation. Resources, Conservation and Recycling.129: 20-26.

Hargreaves, A. J., Constantino, C., Dotro, G., Cartmell, E., and Campo, P. (2018). Fate and removal of metals in municipal wastewater treatment: a review. Environmental Technology Reviews. 7(1): 1-18.

Hasballah, A., & Beheary, M. (2016). Detection of Heavy Met-als in Breast Milk and Drinking Water in Damietta Gover-norate, Egypt. Asian Journal of Biology. 1(2): 1-7.

Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A., & Rossi, L. (2020). Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere. 241: 125018.

Helmisaari, H. S., Salemaa, M., Derome, J., Kiikkilä, O., Uhlig, C., & Nieminen, T. M. (2007). Remediation of Heavy Metal-Contaminated Forest Soil Using Recycled Organic Matter and Native Woody Plants. Journal of Envi-ronmental Quality. 36(4): 1145-1153.

Hettiarachchi, G.M., Nelson, N.O., Agudelo-Arbelaez, S.C., Mulisa, Y.A., & Lemunyon, J.L. (2012). Phytoremediation: protecting the environment with plants. Kansas State Uni-versity, Kansas. Pp. 1-7.

Hou, W., Chen, X., Song, G., Wang, Q., & Chi Chang, C. (2007). Effects of copper and cadmium on heavy metal polluted water body restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry. 45(1): 62-69.

Huang, H., Liu, J., Zhang, P., Zhang, D., & Gao, F. (2017). Investigation on the simultaneous removal of fluoride, am-monia nitrogen and phosphate from semiconductor waste-water using chemical precipitation. Chemical Engineering Journal. 307: 696-706.

Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G., Zeshan., &Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytore-mediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany. 153: 80-88.

Iha, D. S., & Bianchini, I., Jr (2015). Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. International Journal of Phytoremediation. 17(10): 929-935.

Islam, M. A., Romić, D., Akber, M. A., & Romić, M. (2018). Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environmental Geochemistry and Health. 40(1): 59-85.

Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of Heavy Metals: Physiological and Molecular Mecha-nisms. Botanical Review. 75(4): 339-364.

Jadia, C.D. and Fulekar, M. (2009). Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 8: 921-928.

Jiang, C., Chen, H., Zhang, Y., Feng, H., Shehzad, M. A., Wang, Y., & Xu, T. (2018). Complexation Electrodialysis as a general method to simultaneously treat wastewaters with metal and organic matter. Chemical Engineering Journal. 348: 952-959.

Kaewsarn, P. (2002). Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere. 47(10): 1081-1085.

Kamal, M. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International. 29(8): 1029-1039.

Kamran, S., Shafaqat, A., Samra, H., Sana, A., Samar, F., Mu-hammad, B. S., Saima, A. B., & Hafiz, M. T. (2013). Heavy Metals Contamination and what are the Impacts on Living Organisms. Greener Journal of Environmental Manage-ment and Public Safety. 2(4): 172-179.

Kara, Y. (2004). Bioaccumulation of Copper from Contami-nated Wastewater by Using Lemna minor. Bulletin of Envi-ronmental Contamination and Toxicology. 72(3): 467-471.

Kara, Y. (2005). Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale. International Journal of Environmental Science and Technology. 2(1): 63-67.

Karami, A., & Shamsuddin, Z.H. (2010). Phytoremediation of heavy metals with several efficiency enhancer methods. Afr. J. Biotechnol. 9: 3689-3698.

Kawahigashi, H. (2009). Transgenic plants for phytoremedia-tion of herbicides. Current Opinion in Biotechnology. 20(2): 225-230.

Khairiah, J., Lim, K. H., Ahmad-Mahir, R., & Ismail, B. S. (2006).Heavy Metals from Agricultural Soils from Cam-eron Highlands, Pahang, and Cheras, Kuala Lumpur, Ma-laysia. Bulletin of Environmental Contamination and Toxi-cology. 77(4): 608-615.

Khan, F.A., & Ansari, A.A. (2005). Eutrophication: An eco-logical vision. The Botany Review. 71: 449-482.

Kidd, P. S., Prieto-Fernández, A., Monterroso, C., & Acea, M. J. (2007). Rhizosphere microbial community and hexachloro-cyclohexane degradative potential in contrasting plant species. Plant and Soil. 302(1-2): 233-247.

Kocoń, A., & Jurga, B. (2017). The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sidaher maphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn. Environmental Science and Pollution Research International. 24(5): 4990-5000.

Koźmińska, A., Wiszniewska, A., Hanus-Fajerska, E., & Muszyńska, E. (2018). Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Re-ports.12(1): 1-14.

Kulkarni, P., Olson, N. D., Paulson, J. N., Pop, M., Maddox, C., Claye, E., Rosenberg Goldstein, R. E., Sharma, M., Gibbs, S. G., Mongodin, E. F., & Sapkota, A. R. (2018). Conventional wastewater treatment and reuse site practices modify bacterial community structure but do not eliminate some opportunistic pathogens in reclaimed water. Science of The Total Environment. 639: 1126-1137.

Kumar Yadav, K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Ahmad Khan, S. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering. 120: 274-298.

Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety. 147: 1035-1045.

Labidi, S., Firmin, S., Verdin, A., Bidar, G., Laruelle, F., Douay, F., Shirali, P., Fontaine, J., &Lounès-Hadj Sahraoui, A. (2017). Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: A long-term field experiment. Ecotoxi-cology and Environmental Safety. 138: 190-198.

Lesage, E., Mundia, C., Rousseau, D., van de Moortel, A., du Laing, G., Meers, E., Tack, F., de Pauw, N., & Verloo, M. (2007). Sorption of Co, Cu, Ni and Zn from industrial ef-fluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecological Engineering. 30(4): 320-325.

Lesiv, M. S., Polishchuk, A. I., & Antonyak, H. L. (2020). Aquatic macrophytes: ecological features and functions. Studia Biologica. 14(2): 79-94.

Leung, H. M., Duzgoren-Aydin, N. S., Au, C. K., Krupanidhi, S., Fung, K. Y., Cheung, K. C., Wong, Y. K., Peng, X. L., Ye, Z. H., Yung, K. K., & Tsui, M. T. (2017). Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environmental Science and Pol-lution Research International. 24(10): 9079-9088.

Levchuk, I., Rueda Márquez, J. J., & Sillanpää, M. (2018).Removal of natural organic matter (NOM) from wa-ter by ion exchange-A review. Chemosphere. 192: 90-104.

Lombi, E., Zhao, F., Dunham, S., & McGrath, S. (2001). Phy-toremediation of Heavy Metal-Contaminated Soils: Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction. Journal of Environmental Quality. 30(6): 1919-1926.

Ma, Y., Oliveira, R. S., Nai, F., Rajkumar, M., Luo, Y., Rocha, I., & Freitas, H. (2015). The hyper accumulator Sedum plumbizincicola harbors metal-resistant endophytic bacte-ria that improve its phytoextraction capacity in multi-metal contaminated soil. Journal of Environmental Management. 156: 62-69.

Macek, T., Kotrba, P., Svatos, A., Novakova, M., Demnerova, K., & Mackova, M. (2008). Novel roles for genetically modified plants in environmental protection. Trends in Bio-technology. 26(3): 146-152.

Madera-Parra, C. A., Peña-Salamanca, E. J., Peña, M. R., Rousseau, D. P., & Lens, P. N. (2015). Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerumsagit-tatum and Heliconia psittacorum in Constructed Wet-lands. International Journal of Phytoremediation. 17(1-6): 16-24.

Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and op-portunities in the phytoremediation of heavy metals con-taminated soils: A review. Ecotoxicology and Environ-mental Safety. 126: 111-121.

Mahdavian, K., Ghaderian, S. M., & Torkzadeh-Mahani, M. (2015).Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead-zinc mining area. Iran. Journal of Soils and Sediments. 17(5): 1310-1320.

Marryott, R. A. (1996). Optimal Ground-Water Remediation Design Using Multiple Control Technologies. Ground Water. 34(3): 425-433.

Mays, P., & Edwards, G. (2001). Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecological Engineer-ing.16(4): 487-500.

Mendoza, R. E., García, I. V., de Cabo, L., Weigandt, C. F., & Fabrizio De Iorio, A. (2015). The interaction of heavy met-als and nutrients present in soil and native plants with ar-buscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Science of The Total Environment. 505: 555-564.

Mesa, J., Mateos-Naranjo, E., Caviedes, M., Redondo-Gómez, S., Pajuelo, E., & Rodríguez-Llorente, I. (2015). Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizo-accumulator Spartina maritima. Marine Pollution Bulletin. 90(1-2): 150-159.

Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere. 57(8): 997-1005.

Mishra, S., Sharma, S., & Vasudevan, P. (2008). Comparative effect of biofertilizers on fodder production and quality in guinea grass (Panicum maximum Jacq.). Journal of the Sci-ence of Food and Agriculture.88(9): 1667-1673.

Mishra, V. K., Tripathi, B., & Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials. 172(2-3): 749-754.

Mohammadzadeh P. P., & Peighambardoust, S. J. (2018). A review on acrylic based hydrogels and their applications in wastewater treatment. Journal of Environmental Manage-ment. 217: 123-143.

Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Parama-sivan, T., Naushad, M., Prakashmaran, J., Gayathri, V., & Al-Duaij, O. K. (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters. 16(4): 1339-1359.

Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters. 8(3): 199-216.

Nagendran, R., Selvam, A., Joseph, K., & Chiemchaisri, C. (2006). Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: A brief review. Waste Management. 26(12): 1357-1369.

Najeeb, U., Ahmad, W., Zia, M. H., Zaffar, M., & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry. 10: S3310-S3317.

Navari-Izzo, F., & Quartacci, M.F. (2001). Phytoremediation of metals-Tolerance mechanisms against oxidative stress. Minerva Biotechnol. 13: 73-83.

Nedelkoska, T., & Doran, P. (2000). Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering. 13(5): 549-561.

Nowack, B., Schulin, R., & Robinson, B. H. (2006).Critical Assessment of Chelant-Enhanced Metal Phytoextraction. Environmental Science and Technology. 40(17): 5225-5232.

Odjegba, V. J., & Fasidi, I. O. (2004). Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology (London, England). 13(7): 637-646.

Odjegba, V. J., & Fasidi, I. O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. The Environmental-ist. 27(3): 349-355.

Olguín, E. J., & Sánchez-Galván, G. (2012). Heavy metal re-moval in phytofiltration and phycoremediation: the need to differentiate between bioabsorption and bioaccumula-tion. New biotechnology. 30(1): 3-8.

Oyuela Leguizamo, M. A., Fernández Gómez, W. D., & Sar-miento, M. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands-A review. Chemosphere. 168: 1230-1247.

Padmavathiamma, P.K., & Li, L.Y. (2007). Phytoremediation technology: hyper accumulation metals in plants. Water Air Soil Pollut. 184: 105-126.

Parra, L. M. M., Torres, G., Arenas, A. D., Sánchez, E., & Rodríguez, K. (2011). Phytoremediation of Low Levels of Heavy Metals Using Duckweed (Lemna minor). Abiotic Stress Responses in Plants. Pp. 451-463.

Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science. 15(2): 278-286.

Peligro, F. R., Pavlovic, I., Rojas, R., & Barriga, C. (2016). Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides. Chemical En-gineering Journal. 306: 1035-1040.

Pereira, B. F. F., Abreu, C. A. D., Herpin, U., Abreu, M. F. D., & Berton, R. S. (2010). Phytoremediation of lead by jack beans on a Rhodic Hapludox amended with EDTA. Scientia Agricola. 67(3): 308-318.

Phetcharat, P., & Duangpaeng, A. (2012). Screening of Endo-phytic Bacteria from Organic Rice Tissue for Indole Acetic Acid Production. Procedia Engineering. 32: 177-183.

Prasad, M. N. V., & de Oliveira Freitas, H. M. (2003). Metal hyper accumulation in plants - Biodiversity prospecting for phytoremediation technology.Electronic Journal of Bio-technology. 6(3).

Prasad, M., Greger, M., & Aravind, P. (2005). Biogeochemical cycling of trace elements by aquatic and wetland plants: Relevance to phytoremediation. Trace Elem. Environ. Bio-geochem. Biotechnol Bioremediat.1: 451-474.

Pratas, J., Paulo, C., Favas, P. J., & Venkatachalam, P. (2014). Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecological Engineering. 69: 170-176.

Rahman, M.A., & Hasegawa, H. (2011). Aquatic arsenic: phy-toremediation using floating macrophytes. Chemosphere. 83(5): 633-646.

Rai, P. K., & Tripathi, B. D. (2008). Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment. 148(1-4): 75-84.

Rai, P. K., & Tripathi, B. D. (2009). Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, In-dia. Environmental Monitoring and Assessment.148(1-4): 75-84.

Rai, U., Sinha, S., Tripathi, R., & Chandra, P. (1995). Waste-water treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecological Engineering. 5(1): 5-12.

Raskin, I., & Ensley, B.D. (2000). Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. John Wiley and Sons, Inc., New York. Pp. 53-70.

Raskin, I., & Ensley, B. D. (1999). Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment (1st ed.). Wiley-Interscience.

Raval, N. P., Shah, P. U., & Shah, N. K. (2016). Adsorptive removal of nickel(II) ions from aqueous environment: A re-view. Journal of Environmental Management. 179: 1-20.

Rawat, K., Fulekar, M.H., & Pathak, B. (2012). Rhizofiltration: a green technology for remediation of heavy metals. Int. J. Innov. Biosci. 2(4):193-199.

Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace ele-ments. New Phytologist. 218(2): 407-411.

Renuka, N., Sood, A., Ratha, S. K., Prasanna, R., & Ahluwalia, A. S. (2013). Evaluation of microalgal consortia for treat-ment of primary treated sewage effluent and biomass pro-duction. Journal of Applied Phycology. 25(5): 1529-1537.

Robinson, B., Kim, N., Marchetti, M., Moni, C., Schroeter, L., van den Dijssel, C., Milne, G., & Clothier, B. (2006). Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environmental and Experimental Botany.58(1-3): 206-215.

Rugh, C., Bizily, S.P., & Meagher, R.B. (2000).Phytoreduction of environmental mercury pollution. Phytoremediation of toxic metals: using plants to clean-up the environment. New York, Wiley. Pp. 151-170.

Said, M., Cassayre, L., Dirion, J. L., Nzihou, A., & Joulia, X. (2015). Behavior of heavy metals during gasification of phytoextraction plants: thermo-chemical modelling. 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering. 341-346.

Sánchez-Martín, M. J., Sánchez-Camazano, M., & Lorenzo, L. F. (2000). Cadmium and lead contents in suburban and ur-ban soils from two medium-sized cities of Spain: influence of traffic intensity. Bulletin of Environmental Contamina-tion and Toxicology. 64(2): 250-257.

Sanmuga Priya, E., & Senthamil Selvan, P. (2017). Water hya-cinth (Eichhornia crassipes) - An efficient and economic adsorbent for textile effluent treatment - A review. Arabian Journal of Chemistry. 10: S3548-S3558.

Sanyal, T. (2017). Aquatic weed biodiversity and its impact on fish productivity of pisciculture ponds in some specific sites of south Bengal. International Journal of Engineering Sci-ences & Rresearch Technology. Pp. 1-49.

Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phy-toremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemos-phere. 171: 710-721.

Sas-Nowosielska, A., Galimska-Stypa, R., Kucharski, R., Zielonka, U., Małkowski, E., & Gray, L. (2007). Remedia-tion aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environmental Monitoring and Assessment. 137(1-3): 101-109.

Schnoor, J. L. (1996). Environmental modeling—fate and transport of pollutants in water, air, and soil. Wiley, New York. Pp. 682.

Selvapathy, P., & Sreedhar, P. (1991). Heavy metals removal by water hyacinth. J. Ind. Public Health Eng. 3: 11-17.

Sen, A., & Mondal, N. (1987). Salvinia natans? as the scaven-ger of Hg(II). Water, Air, and Soil Pollution. 34(4).

Shaheen, M. R., Ayyub, C. M., Amjad, M., &Waraich, E. A. (2015). Morpho-physiological evaluation of tomato geno-types under high temperature stress conditions. Journal of the Science of Food and Agriculture. 96(8): 2698-2704.

Shahid, M. J., Arslan, M., Ali, S., Siddique, M., & Afzal, M. (2018). Floating Wetlands: A Sustainable Tool for Waste-water Treatment. CLEAN-Soil, Air, Water. 46(10): 1800120.

Sharma, S., Singh, B., & Manchanda, V. K. (2014). Phytore-mediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research. 22(2): 946-962.

Singh, D., Gupta, R., & Tiwari, A. (2011). Phytoremediation of Lead from Wastewater Using Aquatic Plants. International Journal of Biomedical Research. 2(7).

Singh, M., Rai, U., Nadeem, U., & David, A. (2014). Role of Potamogeton Pectinatus in Phytoremediation of Metals. Chemical Science Review and Letters. 3:123-129.

Soares, P. A., Souza, R., Soler, J., Silva, T. F., Souza, S. M. G. U., Boaventura, R. A., &Vilar, V. J. (2017). Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation proc-esses. Separation and Purification Technology. 172: 450-462.

Sood, A., Uniyal, P. L., Prasanna, R., & Ahluwalia, A. S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio. 41(2): 122-137.

Souto, K. M., Jacques, R., Zanella, R., Machado, S., Balbinot, A., & Avila, L. A. (2020). Phytostimulation of lowland soil contaminated with imidazolinone herbicides. International Journal of Phytoremediation. 22(7): 774-780.

Sreelal, G., & Jayanthi, R. (2017). Review on phytoremediation technology for removal of soil contaminant. Indian J. Sci. Res. 14: 127-130.

Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Ex-perimental Botany. 47(3): 271-280.

Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phy-toextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Frontiers in Plant Science. 9: 1-35.

Sun, Y., Sun, G., Zhou, Q., Xu, Y., Wang, L., Liang, X., Sun, Y., & Qing, X. (2011). Induced-phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with Marvel of Peru (Mirabilis jalapa L.). Plant, Soil and Environment. 57(8): 364-371.

Syukor, A.A., Zularisam, A., Ideris, Z., Ismid, M.M., Nakmal, H., Sulaiman, S., & Nasrullah, M. (2014). Performance of Phytogreen Zone for BOD5 and SS Removal for Refur-bishment Conventional Oxidation Pond in an Integrated Phytogreen System. World Acad. Sci. Eng. Technol. 8: 11-16.

Szczygłowska, M., Piekarska, A., Konieczka, P., & Namieśnik, J. (2011). Use of Brassica plants in the phytoremediation and biofumigation processes. International Journal of Mo-lecular Sciences. 12(11): 7760-7771.

Tabinda, A. B., Irfan, R., Yasar, A., Iqbal, A., & Mahmood, A. (2020). Phytoremediation potential of Pistia stratio-tes and Eichhornia crassipes to remove chromium and copper. Environmental Technology. 41(12): 1514-1519.

Tee, P. F., Abdullah, M. O., Tan, I. A. W., Rashid, N. K., Amin, M. A. M., Nolasco-Hipolito, C., & Bujang, K. (2016). Review on hybrid energy systems for wastewater treatment and bio-energy production. Renewable and Sustainable Energy Reviews. 54: 235-246.

Thomas, T. H., & Eden, R. D. (1990). Water hyacinth-a major neglected resource. In Energy and the Environment.Into the 90s.Proceedings of the 1st World renewable energy con-gress, Reading, UK, 23-28 September 1990. Pergamon. Pp. 2092-2096.

Uka, U., Mohammed, H., & Aina, E. (2012). Preliminary Stud-ies on the Phytoremediation Potential of Phragmites karka (Retz.) in Asa River. Journal of Fisheries and Aquatic Sci-ence. 8(1): 87-93.

Van Aken, B. (2008). Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends in Biotechnology. 26(5): 225-227.

Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research.16(7): 765-794.

Verla, A.W., Verla, E.N., Amaobi, C.E., & Enyoh, C.E. (2018). Water Pollution Scenario at River Uramurukwa Flowing Through Owerri Metropolis, Imo State, Nigeria. Interna-tional Journal of Scientific Research. 3: 40-46.

Wang, G., Fuerstenau, M., & Smith, R. (1998). Sorption of Heavy Metals onto Nonliving Water Hyacinth Roots. Mineral Processing and Extractive Metallurgy Review. 19(1): 309-322.

Wang, L. Y. (2009). Effect of Scirpus planiculmis on the Remediation of Heavy Metals of Municipal Sludge. 2009 3rd International Conference on Bioinformatics and Bio-medical Engineering. Pp. 1-3.

Wang, T. C., Weissman, J. C., Ramesh, G., Varadarajan, R., & Benemann, J. R. (1996). Parameters for Removal of Toxic Heavy Metals by Water Milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology. 57(5): 779-786.

Wang, Y., Meng, D., Fei, L., Dong, Q., & Wang, Z. (2019). A novel phytoextraction strategy based on harvesting the dead leaves: Cadmium distribution and chelator regulations among leaves of tall fescue. Science of The Total Environment. 650: 3041-3047.

WHO. (2006). Meeting the MDG Drinking Water and Sanita-tion Target: The Urban and Rural Challenge of the Decade. Pp.1-47.

WHO. (1984). Guideline for drinking water quality recommen-dations. World Health Organization, Geneva.

Yabanli, M., Yozukmaz, A., & Sel, F. (2014). Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Brazilian Archives of Biology and Technology.57(3): 434-440.

Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health. 26(3-4): 343-357.

Zeng, P., Guo, Z., Cao, X., Xiao, X., Liu, Y., & Shi, L. (2018). Phyto-stabilization potential of ornamental plants grown in soil contaminated with cadmium. International Journal of Phytoremediation. 20(4): 311-320.

Zhang, T., Lu, Q., Su, C., Yang, Y., Hu, D., & Xu, Q. (2017). Mercury induced oxidative stress, DNA damage, and acti-vation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Ecotoxicology and Environ-mental Safety. 143: 46-56.

Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for reme-diation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research. 20(12): 8472-8483.

Zhong, L., Liu, L., & Yang, J. (2012). Characterization of heavy metal pollution in the paddy soils of Xiangyin County, Dongting lake drainage basin, central south China. Environmental Earth Sciences. 67(8): 2261-2268.

Zhu, C., Tian, H., Cheng, K., Liu, K., Wang, K., Hua, S., Gao, J., & Zhou, J. (2016). Potentials of whole process control of heavy metals emissions from coal-fired power plants in China. Journal of Cleaner Production. 114: 343-351.

Zhu, Y. L., Zayed, A. M., Qian, J., Souza, M., & Terry, N. (1999). Phytoaccumulation of Trace Elements by Wetland Plants: II. Water Hyacinth.Journal of Environmental Qual-ity. 28(1): 339-344.

Published

2022-04-30

How to Cite

Saha, A., Mukherjee, P., Roy, K., Sen, K., & Sanyal, T. (2022). A review on phyto-remediation by aquatic macrophytes: A natural promising tool for sustainable management of ecosystem. International Journal of Experimental Research and Review, 27, 9–31. https://doi.org/10.52756/ijerr.2022.v27.002

Issue

Section

Articles