Implementation of Artificial Intelligence, Machine Learning, and Internet of Things (IoT) in revolutionizing Agriculture: A review on recent trends and challenges
DOI:
https://doi.org/10.52756/ijerr.2023.v30.018Keywords:
Artificial Intelligence, Artificial Neural Network, Machine Learning, Internet of Things, Fuzzy LogicAbstract
Artificial Intelligence (AI) can revolutionize agriculture which impacts a country’s economy, employing more than 30% of the world’s population directly or indirectly. It can fulfill the needs of an ever-growing world’s population through automation. Traditional farmland practices like weeding, pesticide spraying, irrigation, monitoring soil nutritional and moisture status, etc. can be performed quicker using robots, sensors, drones, and algorithms. It reduces water wastage and pesticide overuse, maintains soil fertility, helps in reducing labor and enhances crop yield and productivity despite world problems. However, its penetration into agriculture is still in its infancy due to its uneconomical nature, lack of expertise and big data requirement for accuracy among others. This paper delves deeper into the various applications and impacts of AI in agriculture, new tools being used, challenges and future scope related to this field. Combined with Artificial Neural Network (ANN) models and Machine Learning (ML), along with Expert systems (ES) and Internet of Things (IoT), AI can do wonders in agriculture in the subsequent years to come.
References
Abeyratne, S.A., & Monfared, R.P. (2016). Blockchain ready manufacturing supply chain using distributed ledger. International Journal of Research in Engineering and Technology, 05(9), 1-10. https://doi.org/10.15623/ijret.2016.0509001
Agrawal, R., & Mehta, S. C. (2007). Weather based forecasting of crop yields, pests and diseases-IASRI models. J. Ind. Soc. Agril. Statist., 61(2), 255–263.
Ahngar, T. A., Bahar, F. A., Singh, L., Bhat, M. A., Singh, P., Mahdi, S. S., et al. (2022). Artificial intelligence in agriculture, applications, benefits and challenges: A review. The Pharma Innovation Journal, 11(3), 1407–1414.
Aitkenhead, M. J., Dalgetty, I. A., Mullins, C. E., McDonald, A. J. S., & Strachan, N. J. C. (2003). Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and Electronics in Agriculture, 39(3), 157–171. https://doi.org/10.1016/S0168-1699(03)00076-0
Al Bashish, D., Braik, M., & Bani-Ahmad, S. (2011). Detection and classification of leaf diseases using k-means-based segmentation and neural-networks-based classification. Information Technology Journal, 10(2), 267–275. https://doi.org/10.3923/itj.2011.267.275
Al Hiary, H., Bani Ahmad, S., Reyalat, M., Braik, M., & ALRahamneh, Z. (2011). Fast and accurate detection and classification of plant diseases. International Journal of Computer Applications, 17(1), 31–38. https://doi.org/10.5120/2183-2754
Anand, K., Jayakumar, C., Muthu, M., & Amirneni, S. (2015). Automatic drip irrigation system using fuzzy logic and mobile technology. 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), 54–58. https://doi.org/10.1109/TIAR.2015.7358531
Arif, C., Mizoguchi, M., Mizoguchi, M., & Doi, R. (2012). Estimation of soil moisture in paddy field using Artificial Neural Networks. International Journal of Advanced Research in Artificial Intelligence, 1(1). https://doi.org/10.14569/IJARAI.2012.010104
Åstrand, B., & Baerveldt, A.-J. (2002). An agricultural mobile robot with vision-based perception for mechanical weed control. Autonomous Robots, 13(1), 21–35. https://doi.org/10.1023/A:1015674004201
Aubry, C., Papy, F., & Capillon, A. (1998). Modelling decision-making processes for annual crop management. Agricultural Systems, 56(1), 45–65. https://doi.org/10.1016/S0308-521X(97)00034-6
Awasthi, Y. (2020). Press “a” for artificial intelligence in agriculture: A review. JOIV : International Journal on Informatics Visualization, 4(3). https://doi.org/10.30630/joiv.4.3.387
Bakker, T., van Asselt, K., Bontsema, J., Müller, J., & van Straten, G. (2006). An autonomous weeding robot for organic farming. In P. Corke & S. Sukkariah (Eds.), Springer Berlin Heidelberg. Field and Service Robotics, Vol. 25, pp. 579–590. https://doi.org/10.1007/978-3-540-33453-8_48
Balleda, K., Satyanvesh, D., Sampath, N. V. S. S. P., Varma, K. T. N., & Baruah, P. K. (2014). Agpest: An efficient rule-based expert system to prevent pest diseases of rice & wheat crops. 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO), 262–268. https://doi.org/10.1109/ISCO.2014.7103957
Banerjee, G., Sarkar, U., & Ghosh, I. (2017). A radial basis function network-based classifier for detection of selected tea pests. International Journal of Advanced Research in Computer Science and Software Engineering, 7(5), 665–669. https://doi.org/10.23956/ijarcsse/V7I5/0152
Batchelor, W. D., McClendon, R. W., & Wetzstein, M. E. (1992). Knowledge engineering approaches in developing expert simulation systems. Computers and Electronics in Agriculture, 7(2), 97–107. https://doi.org/10.1016/S0168-1699(05)80025-0
Batchelor, W. D., McClendon, R. W., Adams, D. B., & Jones, J. W. (1989). Evaluation of SMARTSOY: An expert simulation system for insect pest management. Agricultural Systems, 31(1), 67–81. https://doi.org/10.1016/0308-521X(89)90013-9
Bestelmeyer, B. T., Marcillo, G., McCord, S. E., Mirsky, S., Moglen, G., Neven, L. G., et al. (2020). Scaling up agricultural research with artificial intelligence. IT Professional, 22(3), 33–38. https://doi.org/10.1109/MITP.2020.2986062
Bhattacharya, P., Maity, P. P., Ray, M., & Mridha, N. (2021). Prediction of mean weight diameter of soil using machine learning approaches. Agronomy Journal, 113(2), 1303–1316. https://doi.org/10.1002/agj2.20469
Bi̇Lgi̇Li̇, M. (2011). The use of artificial neural networks for forecasting the monthly mean soil temperatures in Adana, Turkey. Turkish Journal of Agriculture and Forestry. https://doi.org/10.3906/tar-1001-593
Birrell, S. J., Sudduth, K. A., & Borgelt, S. C. (1996). Comparison of sensors and techniques for crop yield mapping. Computers and Electronics in Agriculture, 14(2–3), 215–233. https://doi.org/10.1016/0168-1699(95)00049-6
Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G., & Moltó, E. (2002). Ae—Automation and emerging technologies. Biosystems Engineering, 83(2), 149–157. https://doi.org/10.1006/bioe.2002.0109
Boggess, W. G., van Blokland, P. J., & Moss, S. D. (1989). FinARS: A financial analysis review expert system. Agricultural Systems, 31(1), 19–34. https://doi.org/10.1016/0308-521X(89)90010-3
Bos, L., & Parlevliet, J. E. (1995). Concepts and terminology on plant/pest relationships: Toward consensus in plant pathology and crop protection. Annual Review of Phytopathology, 33(1), 69–102. https://doi.org/10.1146/annurev.py.33.090195.000441
Boulanger, A. (1983). The expert system PLANT/CD: A case study in applying the general purpose inference system ADVISE to predicting black cutworm damage in corn. https://doi.org/10.13140/RG.2.2.30266.24003
Bralts, V. F., Driscoll, M. A., Shayya, W. H., & Cao, L. (1993). An expert system for the hydraulic analysis of microirrigation systems. Computers and Electronics in Agriculture, 9(4), 275–287. https://doi.org/10.1016/0168-1699(93)90046-4
Broner, I., & Comstock, C. R. (1997). Combining expert systems and neural networks for learning site-specific conditions. Computers and Electronics in Agriculture, 19(1), 37–53. https://doi.org/10.1016/S0168-1699(97)00031-8
Burks, T. F., Shearer, S. A., Heath, J. R., & Donohue, K. D. (2005). Evaluation of neural-network classifiers for weed species discrimination. Biosystems Engineering, 91(3), 293–304. https://doi.org/10.1016/j.biosystemseng.2004.12.012
Cai, L., & Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14(0), 2. https://doi.org/10.5334/dsj-2015-002
Cao, W., Zheng, L., Zhu, H., & Wu, P. (2010). General framework for animal food safety traceability using gs1 and rfid. In D. Li & C. Zhao (Eds.), Computer and Computing Technologies in Agriculture III (Vol. 317, pp. 297–304). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12220-0_43
Cassardo, C., Loglisci, N., Manfrin, M., & Spanna, F. (2003). The estimate of surface wetness of the vegetation: Experiments and numerical methods. Conference on Water Sustainability, pp.1–10.
Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, 96(11), 5952–5959. https://doi.org/10.1073/pnas.96.11.5952
Chakraborty, A. K., Ghorai, A. K., De, R. K., Chakraborty, S., Jha, S. K., Mitra, S., et al. (2013). Expert system for integrated stress management in jute (Corchorus olitorius L. and C. capsularis L.). International Journal of Bio-Resource and Stress Management, 4(2), 192–200.
Chen, G., Xu, B., Lu, M., & Chen, N.-S. (2018). Exploring blockchain technology and its potential applications for education. Smart Learning Environments, 5(1), 1. https://doi.org/10.1186/s40561-017-0050-x
Chen, J., Zhao, C., Jones, G., Yang, H., Li, Z., Yang, G., et al. (2022). Effect and economic benefit of precision seeding and laser land leveling for winter wheat in the middle of China. Artificial Intelligence in Agriculture, 6, 1–9. https://doi.org/10.1016/j.aiia.2021.11.003
Chung, S.O., Choi, M.C., Lee, K.-H., Kim, Y.J., Hong, S.J., & Li, M. (2016). Sensing technologies for grain crop yield monitoring systems: A review. Journal of Biosystems Engineering, 41(4), 408–417. https://doi.org/10.5307/JBE.2016.41.4.408
Cillis, D., Pezzuolo, A., Marinello, F., & Sartori, L. (2018). Field-scale electrical resistivity profiling mapping for delineating soil condition in a nitrate vulnerable zone. Applied Soil Ecology, 123, 780–786. https://doi.org/10.1016/j.apsoil.2017.06.025
Clarke, N. D., Tan, C. S., & Stone, J. A. (1992). Expert system for scheduling supplemental irrigation for fruit and vegetable crops in Ontario. Canadian Agricultural Engineering, 34(1), 27–31.
Datta, A., Ullah, H., Tursun, N., Pornprom, T., Knezevic, S. Z., & Chauhan, B. S. (2017). Managing weeds using crop competition in soybean [Glycine max (L.) Merr.]. Crop Protection, 95, 60–68. https://doi.org/10.1016/j.cropro.2016.09.005
Debaeke, P., & Aboudrare, A. (2004). Adaptation of crop management to water-limited environments. European Journal of Agronomy, 21(4), 433–446. https://doi.org/10.1016/j.eja.2004.07.006
Dhal, S. B., Bagavathiannan, M., Braga-Neto, U., & Kalafatis, S. (2022). Nutrient optimization for plant growth in Aquaponic irrigation using Machine Learning for small training datasets. Artificial Intelligence in Agriculture, 6, 68–76. https://doi.org/10.1016/j.aiia.2022.05.001
Dursun, M., & Semih, O. (2011). A wireless application of drip irrigation automation supported by soil moisture sensors. Scientific Research and Essays, 6(7), 1573–1582.
Ekmekci, P. E., & Arda, B. (2020). History of artificial intelligence. In P. E. Ekmekci & B. Arda, Springer International Publishing. Artificial Intelligence and Bioethics, pp. 1–15. https://doi.org/10.1007/978-3-030-52448-7_1
Elango, K., Honert, R., Kumar, C. N., & Suresh, V. (1992). Pc-based management game for irrigated farming. Computer-Aided Civil and Infrastructure Engineering, 7(3), 243–256. https://doi.org/10.1111/j.1467-8667.1992.tb00434.x
Eli-Chukwu, N. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9(4), 4377–4383. https://doi.org/10.48084/etasr.2756
Elshorbagy, A., & Parasuraman, K. (2008). On the relevance of using artificial neural networks for estimating soil moisture content. Journal of Hydrology, 362(1–2), 1–18. https://doi.org/10.1016/j.jhydrol.2008.08.012
Faggella, D. (2020). AI in Agriculture – Present Applications and Impact. Emerj Artificial Intelligence Research. https://emerj.com/ai-sector-overviews/ai-agriculture-present-applications-impact/
Fahad, S., Hussain, S., Chauhan, B. S., Saud, S., Wu, C., Hassan, S., et al. (2015). Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Protection, 71, 101–108. https://doi.org/10.1016/j.cropro.2015.02.005
Fan, J., Han, F., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1(2), 293–314. https://doi.org/10.1093/nsr/nwt032
Fang, J., Wang, S. & Zhang, C. (2005). Application of Genetic Algorithm (GA) Trained Artificial Neural Network to Identify Tomatoes with Physiological Diseases. Nature and Science, 3(2), 52-58.
FAO. (2009). Global agriculture towards 2050: High-level Expert Forum on how to feed the world in 2050, 12-13 Oct 2009-World Relief Web. https://reliefweb.int/report/world/global-agriculture-towards-2050-high-level-expert-forum-how-feed-world-2050-12-13-oct
Fartitchou, M., Makkaoui, K. E., Kannouf, N., & Allali, Z. E. (2020). Security on blockchain technology. 2020 3rd International Conference on Advanced Communication Technologies and Networking (CommNet), pp.1–7. https://doi.org/10.1109/CommNet49926.2020.9199622
Feng, L., Wang, G., Han, Y., Li, Y., Zhu, Y., Zhou, Z., et al. (2017). Effects of planting pattern on growth and yield and economic benefits of cotton in a wheat-cotton double cropping system versus monoculture cotton. Field Crops Research, 213, 100–108. https://doi.org/10.1016/j.fcr.2017.07.003
Francl, L. J., & Panigrahi, S. (1997). Artificial neural network models of wheat leaf wetness. Agricultural and Forest Meteorology, 88(1–4), 57–65. https://doi.org/10.1016/S0168-1923(97)00051-8
Gang Liu, Xuehong Yang, Yinbing Ge, & Yuxin Miao. (2006). An artificial neural network–based expert system for fruit tree disease and insect pest diagnosis. 2006 IEEE International Conference on Networking, Sensing and Control, 1076–1079. https://doi.org/10.1109/ICNSC.2006.1673301
Gao, R., Zhou, H., & Su, G. (2011). A wireless sensor network environment monitoring system based on TinyOS. Proceedings of 2011 International Conference on Electronics and Optoelectronics, 1, V1-497-V1-501. https://doi.org/10.1109/ICEOE.2011.6013153
Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828–831. https://doi.org/10.1126/science.1183899
Gebregiorgis, M. F., & Savage, M. J. (2006). Determination of the timing and amount of irrigation of winter cover crops with the use of dielectric constant and capacitance soil water content profile methods. South African Journal of Plant and Soil, 23(3), 145–151. https://doi.org/10.1080/02571862.2006.10634746
Gerhards, R., & Christensen, S. (2003). Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley: Patch spraying. Weed Research, 43(6), 385–392. https://doi.org/10.1046/j.1365-3180.2003.00349.x
Gerhards, R., Sökefeld, M., Nabout, A., Therburg, R. D., & Kühbauch, W. (2022). Online weed control using digital image analysis. Journal of Plant Diseases and Protection, 18, 421–427.
Ghosh, I. (2015). An Artificial Intelligence Technique for Jute Insect Pests. Int. J. of Adv. Research in Computer Science and Software Engineering, 5(11), 791-794.
Ghosh, I., & Samanta, R. K. (2003). Teapest: An expert system for insect pest management in tea. Applied Engineering in Agriculture, 19(5). https://doi.org/10.13031/2013.15309
Ghyar, B. S., & Birajdar, G. K. (2017). Computer vision based approach to detect rice leaf diseases using texture and color descriptors. 2017 International Conference on Inventive Computing and Informatics (ICICI), 1074–1078. https://doi.org/10.1109/ICICI.2017.8365305
Gleason, M. L., Duttweiler, K. B., Batzer, J. C., Taylor, S. E., Sentelhas, P. C., Monteiro, J. E. B. A., et al. (2008). Obtaining weather data for input to crop disease-warning systems: Leaf wetness duration as a case study. Scientia Agricola, 65(spe), 76–87. https://doi.org/10.1590/S0103-90162008000700013
Gondchawar, N., & Kawitkar, R.S. (2016). IoT based Smart Agriculture. International Journal of Advanced Research in Computer and Communication Engineering, 5(6).
González, L. A., Bishop-Hurley, G. J., Handcock, R. N., & Crossman, C. (2015). Behavioral classification of data from collars containing motion sensors in grazing cattle. Computers and Electronics in Agriculture, 110, 91–102. https://doi.org/10.1016/j.compag.2014.10.018
Gottschalk, K., Nagy, L., & Farkas, I. (2003). Improved climate control for potato stores by fuzzy controllers. Computers and Electronics in Agriculture, 40(1–3), 127–140. https://doi.org/10.1016/S0168-1699(03)00016-4
Grand View Research. (2019). Artificial intelligence in agriculture market size worth $2. 9 billion by 2025, cagr: 25. 4%. Grand View Research.
https://www.grandviewresearch.com/press-release/global-artificial-intelligence-in-agriculture-market
Guo, X., Cai, R., Wang, S., Tang, B., Li, Y., & Zhao, W. (2018). Non-destructive geographical traceability of sea cucumber (apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods. Royal Society Open Science, 5(1), 170714. https://doi.org/10.1098/rsos.170714
Gupta, J. (2019). The Role of Artificial intelligence in Agriculture Sector. CustomerthinkCom. https://customerthink.com/the-role-of-artificial-intelligence-in-agriculture-sector/#:~:text=The%20use%20of%20Artificial%20intelligence,comparison%20of%20the%20desired%20outcomes
Haifeng Z., Yang L., Yu Z., Lijuan S., Lixin T., & Hongwen B. (2019). Design and implementation of intelligent terminal service system for greenhouse vegetables based on cloud service: A case study of Heilongjiang province. Smart Agriculture, 1(3), 87–99. https://doi.org/10.12133/j.smartag.2019.1.3.201906-SA002
Hamrita, T. K., & Hoffacker, E. C. (2005). Development of a “smart” wireless soil monitoring sensor prototype using rfid technology. Applied Engineering in Agriculture, 21(1), 139–143. https://doi.org/10.13031/2013.17904
Hardwick, N. V. (2002). Weather and plant diseases. Weather, 57(5), 184–190. https://doi.org/10.1002/wea.6080570507
Hastig, G. M., & Sodhi, M. S. (2020). Blockchain for supply chain traceability: Business requirements and critical success factors. Production and Operations Management, 29(4), 935–954. https://doi.org/10.1111/poms.13147
He, Y., Nie, P., & Liu, F. (2013). Advancement and trend of internet of things in agriculture and sensing instrument. Nongye Jixie Xuebao = Transactions of the Chinese Society for Agricultural Machinery, 44(10), 216–226.
Hidayat, T., & Mahardiko, R. (2021). A review of detection of pest problem in rice farming by using blockchain and iot technologies. Journal of Computer Networks, Architecture, and High-Performance Computing, 3(1), 89–96. https://doi.org/10.47709/cnahpc.v3i1.935
Hinnell, A. C., Lazarovitch, N., Furman, A., Poulton, M., & Warrick, A. W. (2010). Neuro-Drip: Estimation of subsurface wetting patterns for drip irrigation using neural networks. Irrigation Science, 28(6), 535–544. https://doi.org/10.1007/s00271-010-0214-8
Huang, K.Y. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, 57(1), 3–11. https://doi.org/10.1016/j.compag.2007.01.015
Hwang, J., Shin, C., & Yoe, H. (2010). Study on an agricultural environment monitoring server system using wireless sensor networks. Sensors, 10(12), 11189–11211. https://doi.org/10.3390/s101211189
IBM. (2018). No farms, no food. IBM Research Blog. https://www.ibm.com/blogs/research/2018/09/agropad/
Ishimwe, R., Abutaleb, K., & Ahmed, F. (2014). Applications of thermal imaging in agriculture—A review. Advances in Remote Sensing, 3(3), 128–140. https://doi.org/10.4236/ars.2014.33011
Jabbar, S., Naseer, K., Gohar, M., Rho, S., & Chang, H. (2016). Trust model at service layer of cloud computing for educational institutes. The Journal of Supercomputing, 72(1), 58–83. https://doi.org/10.1007/s11227-015-1488-7
Jacobs, A. F. G., Heusinkveld, B. G., Kessel, G. J. T., & Holtslag, A. A. M. (2009). Sensitivity analysis of leaf wetness duration within a potato canopy. Meteorological Applications, 16(4), 523–532. https://doi.org/10.1002/met.151
Jain, A., Sarsaiya, S., Wu, Q., Lu, Y., & Shi, J. (2019). A review of plant leaf fungal diseases and its environment speciation. Bioengineered, 10(1), 409–424. https://doi.org/10.1080/21655979.2019.1649520
Jesus, J., Panagopoulos, T., & Neves, A. (2008). In: 4th IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development (EEESD'08) Algarve, Portugal, June 11-13, 2008, pp. 497-501.
Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1–12. https://doi.org/10.1016/j.aiia.2019.05.004
Jiang, L., & Sun, K. (2017). Research on security traceability platform of agricultural products based on internet of things: 2017 7th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2017), Shenyang, China. https://doi.org/10.2991/mcei-17.2017.31
Kamble, S. S., Gunasekaran, A., & Sharma, R. (2020). Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management, 52, 101967. https://doi.org/10.1016/j.ijinfomgt.2019.05.023
Kamble, S., Gunasekaran, A., & Arha, H. (2019). Understanding the Blockchain technology adoption in supply chains-Indian context. International Journal of Production Research, 57(7), 2009–2033. https://doi.org/10.1080/00207543.2018.1518610
Kang, W.-S., Hong, S.-S., Han, Y.-K., Kim, K.-R., Kim, S.-G., & Park, E.-W. (2010). A web-based information system for plant disease forecast based on weather data at high spatial resolution. The Plant Pathology Journal, 26(1), 37–48. https://doi.org/10.5423/PPJ.2010.26.1.037
Karimi, Y., Prasher, S. O., Patel, R. M., & Kim, S. H. (2006). Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture, 51(1–2), 99–109. https://doi.org/10.1016/j.compag.2005.12.001
Karthikamani, R., & Rajaguru, H. (2021). Iot based smart irrigation system using raspberry pi. 2021 Smart Technologies, Communication and Robotics (STCR), 1–3. https://doi.org/10.1109/STCR51658.2021.9588877
Khan, M., & Haq, N. (2003). Wheat crop yield loss assessment due to weeds. Sarhad Journal of Agriculture (Pakistan), 18(4), 449-453.
Kim, K. S., Taylor, S. E., Gleason, M. L., & Koehler, K. J. (2002). Model to enhance site-specific estimation of leaf wetness duration. Plant Disease, 86(2), 179–185. https://doi.org/10.1094/PDIS.2002.86.2.179
Kim, M., & Gilley, J. E. (2008). Artificial Neural Network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Computers and Electronics in Agriculture, 64(2), 268–275. https://doi.org/10.1016/j.compag.2008.05.021
Knight, J. D., & Cammell, M. E. (1994). A decision support system for forecasting infestations of the black bean aphid, Aphis fabae Scop., on spring-sown field beans, Vicia faba. Computers and Electronics in Agriculture, 10(3), 269–279. https://doi.org/10.1016/0168-1699(94)90046-9
Kodali, R. K., & Sahu, A. (2016). An IoT based soil moisture monitoring on Losant platform. 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), 764–768. https://doi.org/10.1109/IC3I.2016.7918063
Kolhe, S., Kamal, R., Saini, H. S., & Gupta, G. K. (2011). A web-based intelligent disease-diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops. Computers and Electronics in Agriculture, 76(1), 16–27. https://doi.org/10.1016/j.compag.2011.01.002
Kolhe, S., Raj Kamal, Saini, H. S., & Gupta, G. K. (2011). An intelligent multimedia interface for fuzzy-logic based inference in crops. Expert Systems with Applications, 38(12), 14592–14601. https://doi.org/10.1016/j.eswa.2011.05.023
Kshetri, N. (2017). Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommunications Policy, 41(10), 1027–1038. https://doi.org/10.1016/j.telpol.2017.09.003
Kuehne, G., Llewellyn, R., Pannell, D. J., Wilkinson, R., Dolling, P., Ouzman, J., et al. (2017). Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agricultural Systems, 156, 115–125. https://doi.org/10.1016/j.agsy.2017.06.007
Kumar, A., & Hancke, G. P. (2015). A zigbee-based animal health monitoring system. IEEE Sensors Journal, 15(1), 610–617. https://doi.org/10.1109/JSEN.2014.2349073
Kumar, A., Ranjan, P., & Saini, V. (2022). Smart irrigation system using iot. In R. S. Mor, D. Kumar, & A. Singh (Eds.), Advanced Series in Management (pp. 123–139). Emerald Publishing Limited. https://doi.org/10.1108/S1877-636120220000027009
Kumar, K. A., & Jayaraman, K. (2020). Irrigation control system-data gathering in WSN using IOT. International Journal of Communication Systems, e4563. https://doi.org/10.1002/dac.4563
Kuyper, M. C., & Balendonck, J. (2001). Application of dielectric soil moisture sensors for real-time automated irrigation control. Acta Horticulturae, 562, 71–79. https://doi.org/10.17660/ActaHortic.2001.562.7
Lal, H., Jones, J. W., Peart, R. M., & Shoup, W. D. (1992). FARMSYS-A whole-farm machinery management decision support system. Agricultural Systems, 38(3), 257–273. https://doi.org/10.1016/0308-521X(92)90069-Z
Lemmon, H. (1986). Comax: An expert system for cotton crop management. Science, 233(4759), 29–33. https://doi.org/10.1126/science.233.4759.29
Levine, E. R., Kimes, D. S., & Sigillito, V. G. (1996). Classifying soil structure using neural networks. Ecological Modelling, 92(1), 101–108. https://doi.org/10.1016/0304-3800(95)00199-9
Li, M., & Yost, R. S. (2000). Management-oriented modeling: Optimizing nitrogen management with artificial intelligence. Agricultural Systems, 65(1), 1–27. https://doi.org/10.1016/S0308-521X(00)00023-8
Lin, F.-T., Kuo, Y.-C., Hsieh, J.-C., Tsai, H.-Y., Liao, Y.-T., & Lee, H.-C. (2015). A self-powering wireless environment monitoring system using soil energy. IEEE Sensors Journal, 15(7), 3751–3758. https://doi.org/10.1109/JSEN.2015.2398845
Liu, G., Yang, X., & Li, M. (2005). An artificial neural network model for crop yield responding to soil parameters. In J. Wang, X.-F. Liao, & Z. Yi (Eds.), Advances in Neural Networks – ISNN 2005 (Vol. 3498, pp. 1017–1021). Springer Berlin Heidelberg. https://doi.org/10.1007/11427469_161
Liu, G., Yang, X., Ge, Y., Miao, Y. (2006) An Artificial Neural Network–based Expert System for Fruit Tree Disease and Insect Pest Diagnosis. 2006 IEEE International Conference on Networking, Sensing and Control.
https://doi.org/10.1109/icnsc.2006.1673301
Liu, J., & Wang, X. (2020). Tomato diseases and pests detection based on improved yolo v3 convolutional neural network. Frontiers in Plant Science, 11, 898. https://doi.org/10.3389/fpls.2020.00898
Liu, Q., & Liu, A. (2018). On the hybrid using of unicast-broadcast in wireless sensor networks. Computers & Electrical Engineering, 71, 714–732. https://doi.org/10.1016/j.compeleceng.2017.03.004
Liu, S. Y. (2020). Artificial intelligence (Ai) in agriculture. IT Professional, 22(3), 14–15. https://doi.org/10.1109/MITP.2020.2986121
Liu, Y., Liu, A., Li, Y., Li, Z., Choi, Y., Sekiya, H., et al. (2017). APMD: A fast data transmission protocol with reliability guarantee for pervasive sensing data communication. Pervasive and Mobile Computing, 41, 413–435. https://doi.org/10.1016/j.pmcj.2017.03.012
Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021). From industry 4. 0 to agriculture 4. 0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334. https://doi.org/10.1109/TII.2020.3003910
López, E. M., García, M., Schuhmacher, M., & Domingo, J. L. (2008). A fuzzy expert system for soil characterization. Environment International, 34(7), 950–958. https://doi.org/10.1016/j.envint.2008.02.005
López-Granados, F. (2011). Weed detection for site-specific weed management: Mapping and real-time approaches: Weed detection for site-specific weed management. Weed Research, 51(1), 1–11. https://doi.org/10.1111/j.1365-3180.2010.00829.x
Lv, Z., Wu, J., Li, Y., & Song, H. (2022). Cross-layer optimization for industrial internet of things in real scene digital twins. IEEE Internet of Things Journal, 9(17), 15618–15629. 10.1109/JIOT.2022.3152634
Magarey, R. D., Fowler, G. A., Borchert, D. M., Sutton, T. B., Colunga-Garcia, M., & Simpson, J. A. (2007). Nappfast: An internet system for the weather-based mapping of plant pathogens. Plant Disease, 91(4), 336–345. https://doi.org/10.1094/PDIS-91-4-0336
Mahaman, B. D., Passam, H. C., Sideridis, A. B., & Yialouris, C. P. (2003). DIARES-IPM: A diagnostic advisory rule-based expert system for integrated pest management in Solanaceous crop systems. Agricultural Systems, 76(3), 1119–1135. https://doi.org/10.1016/S0308-521X(02)00187-7
Marx, V. (2013). The big challenges of big data. Nature, 498(7453), 255–260. https://doi.org/10.1038/498255a
McKinion, J. M., & Lemmon, H. E. (1985). Expert systems for agriculture. Computers and Electronics in Agriculture, 1(1), 31–40. https://doi.org/10.1016/0168-1699(85)90004-3
Ministry of Agriculture, Land and Fisheries. (2020). What is a Weed? Information courtesy the Extension Training and Information Services (ETIS) Division. https://agriculture.gov.tt/publications/what-is-a-weed/
Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2022). Iot, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305–6324. https://doi.org/10.1109/JIOT.2020.2998584
Mitra, A., Pooja, & Saini, G. (2019). Automated smart irrigation system(Asis). 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), 327–330. https://doi.org/10.1109/ICCCIS48478.2019.8974466
Moallem, P., & Razmjooy, N. (2012). A multi layer perceptron neural network trained by invasive weed optimization for potato color image segmentation. Trends in Applied Sciences Research, 7(6), 445–455. https://doi.org/10.3923/tasr.2012.445.455
Mogili, U. R., & Deepak, B. B. V. L. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502–509. https://doi.org/10.1016/j.procs.2018.07.063
Moisa, M. B., Tiye, F. S., Dejene, I. N., & Gemeda, D. O. (2022). Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia. Artificial Intelligence in Agriculture, 6, 34–46. https://doi.org/10.1016/j.aiia.2022.02.001
Montas, H., & Madramootoo, C. A. (1992). A decision support system for soil conservation planning. Computers and Electronics in Agriculture, 7(3), 187–202. https://doi.org/10.1016/S0168-1699(05)80019-5
Morales, G., Moragrega, C., Montesinos, E., & Llorente, I. (2018). Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. Pruni. PLOS ONE, 13(3), e0193813. https://doi.org/10.1371/journal.pone.0193813
Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61(3), 319–346. https://doi.org/10.1016/S0034-4257(97)00045-X
Mowforth, P., & Bratko, I. (1987). Ai and robotics; flexibility and integration. Robotica, 5(2), 93–98. https://doi.org/10.1017/S0263574700015058
Mozny, M., Krejci, J., & Kott, I. (1993). CORAC, hops protection management systems. Computers and Electronics in Agriculture, 9(2), 103–110. https://doi.org/10.1016/0168-1699(93)90001-H
Mruthul, T., Halepyati, A. S., & Chittapur, B. M. (2015). Chemical weed management in sesame (Sesamum indicum L.). Karnataka J. Agric. Sci., 28(2), 151–154.
Mundt, J. P., & Connors, J. J. (1999). Problems and challenges associated with the first years of teaching agriculture: A framework for preservice and inservice education. Journal of Agricultural Education, 40(1), 38–48. https://doi.org/10.5032/jae.1999.01038
Munirah, M. Y., Rozlini, M., & Siti, M. Y. (2013). An expert system development: Its application on diagnosing oyster mushroom diseases. 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), 329–332. https://doi.org/10.1109/ICCAS.2013.6703917
Neil Harker, K. (2001). Survey of yield losses due to weeds in central Alberta. Canadian Journal of Plant Science, 81(2), 339–342. https://doi.org/10.4141/P00-102
Nema, M. K., Khare, D., & Chandniha, S. K. (2017). Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7(7), 3903–3910. https://doi.org/10.1007/s13201-017-0543-3
Neven, L. G., Kumar, S., Yee, W. L., & Wakie, T. (2018). Current and future potential risk of establishment of grapholita molesta (Lepidoptera: Tortricidae) in washington state. Environmental Entomology, 47(2), 448–456. https://doi.org/10.1093/ee/nvx203
Nevo, A., & Amir, I. (1991). CROPLOT—An expert system for determining the suitability of crops to plots. Agricultural Systems, 37(3), 225–241. https://doi.org/10.1016/0308-521X(91)90034-8
Ognjanovski, G. (2020). Everything you need to know about neural networks and backpropagation-Machine learning made easy. Medium. https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
Okoye, F. A., Orji, E. Z., & Ozor, G. O. (2018). Using arduino based automatic irrigation system to determine irrigation time for different soil types in nigeria. International Journal of Advanced Research in Computer and Communication Engineering, 7(7), 42–47.
Orlandini, S., Massetti, L., & Marta, A. D. (2008). An agrometeorological approach for the simulation of Plasmopara viticola. Computers and Electronics in Agriculture, 64(2), 149–161. https://doi.org/10.1016/j.compag.2008.04.004
Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79(2), 131–143. https://doi.org/10.1016/j.still.2004.07.002
Panpatte, Deepak. (2018). Artificial Intelligence in Agriculture: An Emerging Era of Research.
Park, D.-H., & Park, J.-W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640–3651. https://doi.org/10.3390/s110403640
Partel, V., Charan Kakarla, S., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture, 157, 339–350. https://doi.org/10.1016/j.compag.2018.12.048
Pasqual, G. M. (1994). Development of an expert system for the identification and control of weeds in wheat, triticale, barley and oat crops. Computers and Electronics in Agriculture, 10(2), 117–134. https://doi.org/10.1016/0168-1699(94)90016-7
Pasqual, G. M., & Mansfield, J. (1988). Development of a prototype expert system for identification and control of insect pests. Computers and Electronics in Agriculture, 2(4), 263–276. https://doi.org/10.1016/0168-1699(88)90002-6
Patel, K. G., & Patil, M. S. (2022). Artificial intelligence in agriculture. International Journal for Research in Applied Science and Engineering Technology, 10(2), 624–627. https://doi.org/10.22214/ijraset.2022.40308
Patil, S. S., & Thorat, S. A. (2016). Early detection of grapes diseases using machine learning and IoT. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802887
Patil, S. S., Dhandra, B. V., Angadi, U. B., Shankar, A. G., & Joshi, N. (2009). Web based Expert System for Diagnosis of MicroNutrients’ Deficiencies in Crops. Proceedings of the World Congress on Engineering and Computer Science 2009, San Francisco, USA.
Pawar, S. B. (2020). Artificial Intelligence in Agriculture. International Journal of Engineering Research & Technology, 8(5).
Paymode, A. S., & Malode, V. B. (2022). Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg. Artificial Intelligence in Agriculture, 6, 23–33. https://doi.org/10.1016/j.aiia.2021.12.002
Perez-Ortiz, M., Gutierrez, P. A., Pena, J. M., Torres-Sanchez, J., Lopez-Granados, F., & Hervas-Martinez, C. (2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles. 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/10.1109/SSCI.2016.7849987
Pérez-Zavala, R., Torres-Torriti, M., Cheein, F. A., & Troni, G. (2018). A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 151, 136–149. https://doi.org/10.1016/j.compag.2018.05.019
Peshin, R., Jayaratne, K. S. U., & Sharma, R. (2014). Ipm extension. In Integrated Pest Management (pp. 493–529). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00026-9
Peskett, M. (2019). IBM’s instant AI Soil Analysis - the AgroPad. Food and Farming Technology. https://www.foodandfarmingtechnology.com/news/data-analytics/ibms-instant-ai-soil-analysis-the-agropad.html
Peters, D. P. C., McVey, D. S., Elias, E. H., Pelzel‐McCluskey, A. M., Derner, J. D., Burruss, N. D., et al. (2020). Big data–model integration and AI for vector‐borne disease prediction. Ecosphere, 11(6). https://doi.org/10.1002/ecs2.3157
Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., & Stentz, A. (2002). The Demeter System for Automated Harvesting. Autonomous Robots, 13(1), 9–20. https://doi.org/10.1023/A:1015622020131
Pinto, D. B., Castro, I., & Vicente, A. A. (2006). The use of TIC’s as a managing tool for traceability in the food industry. Food Research International, 39(7), 772–781. https://doi.org/10.1016/j.foodres.2006.01.015
Plant, R. E. (1989). An artificial intelligence based method for scheduling crop management actions. Agricultural Systems, 31(1), 127–155. https://doi.org/10.1016/0308-521X(89)90017-6
Plant, R. E., Horrocks, R. D., Grimes, D. W., & Zelinski, L. J. (1992). Calex/cotton: An integrated expert system application for irrigation scheduling. Transactions of the ASAE, 35(6), 1833–1838. https://doi.org/10.13031/2013.28803
Plantix. Plantix Analytics. https://plantix.net/en/analytics/
Porto, S. M. C., Arcidiacono, C., Anguzza, U., & Cascone, G. (2014). Development of an information system for the traceability of citrus-plant nursery chain related to the Italian National Service for Voluntary Certification. Agricultural Engineering International: CIGR Journal, 16(2), 208–216. https://cigrjournal.org/index.php/Ejounral/article/view/2707
in nigeria. International Journal of Advanced Research in Computer and Communication Engineering, 7(7), 42–47.
Orlandini, S., Massetti, L., & Marta, A. D. (2008). An agrometeorological approach for the simulation of Plasmopara viticola. Computers and Electronics in Agriculture, 64(2), 149–161. https://doi.org/10.1016/j.compag.2008.04.004
Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79(2), 131–143. https://doi.org/10.1016/j.still.2004.07.002
Panpatte, Deepak. (2018). Artificial Intelligence in Agriculture: An Emerging Era of Research.
Park, D.-H., & Park, J.-W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640–3651. https://doi.org/10.3390/s110403640
Partel, V., Charan Kakarla, S., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture, 157, 339–350. https://doi.org/10.1016/j.compag.2018.12.048
Pasqual, G. M. (1994). Development of an expert system for the identification and control of weeds in wheat, triticale, barley and oat crops. Computers and Electronics in Agriculture, 10(2), 117–134. https://doi.org/10.1016/0168-1699(94)90016-7
Pasqual, G. M., & Mansfield, J. (1988). Development of a prototype expert system for identification and control of insect pests. Computers and Electronics in Agriculture, 2(4), 263–276. https://doi.org/10.1016/0168-1699(88)90002-6
Patel, K. G., & Patil, M. S. (2022). Artificial intelligence in agriculture. International Journal for Research in Applied Science and Engineering Technology, 10(2), 624–627. https://doi.org/10.22214/ijraset.2022.40308
Patil, S. S., & Thorat, S. A. (2016). Early detection of grapes diseases using machine learning and IoT. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802887
Patil, S. S., Dhandra, B. V., Angadi, U. B., Shankar, A. G., & Joshi, N. (2009). Web based Expert System for Diagnosis of MicroNutrients’ Deficiencies in Crops. Proceedings of the World Congress on Engineering and Computer Science 2009, San Francisco, USA.
Pawar, S. B. (2020). Artificial Intelligence in Agriculture. International Journal of Engineering Research & Technology, 8(5).
Paymode, A. S., & Malode, V. B. (2022). Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg. Artificial Intelligence in Agriculture, 6, 23–33. https://doi.org/10.1016/j.aiia.2021.12.002
Perez-Ortiz, M., Gutierrez, P. A., Pena, J. M., Torres-Sanchez, J., Lopez-Granados, F., & Hervas-Martinez, C. (2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles. 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/10.1109/SSCI.2016.7849987
Pérez-Zavala, R., Torres-Torriti, M., Cheein, F. A., & Troni, G. (2018). A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 151, 136–149. https://doi.org/10.1016/j.compag.2018.05.019
Peshin, R., Jayaratne, K. S. U., & Sharma, R. (2014). Ipm extension. In Integrated Pest Management (pp. 493–529). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00026-9
Peskett, M. (2019). IBM’s instant AI Soil Analysis - the AgroPad. Food and Farming Technology. https://www.foodandfarmingtechnology.com/news/data-analytics/ibms-instant-ai-soil-analysis-the-agropad.html
Peters, D. P. C., McVey, D. S., Elias, E. H., Pelzel‐McCluskey, A. M., Derner, J. D., Burruss, N. D., et al. (2020). Big data–model integration and AI for vector‐borne disease prediction. Ecosphere, 11(6). https://doi.org/10.1002/ecs2.3157
Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., & Stentz, A. (2002). The Demeter System for Automated Harvesting. Autonomous Robots, 13(1), 9–20. https://doi.org/10.1023/A:1015622020131
Pinto, D. B., Castro, I., & Vicente, A. A. (2006). The use of TIC’s as a managing tool for traceability in the food industry. Food Research International, 39(7), 772–781. https://doi.org/10.1016/j.foodres.2006.01.015
Plant, R. E. (1989). An artificial intelligence based method for scheduling crop management actions. Agricultural Systems, 31(1), 127–155. https://doi.org/10.1016/0308-521X(89)90017-6
Plant, R. E., Horrocks, R. D., Grimes, D. W., & Zelinski, L. J. (1992). Calex/cotton: An integrated expert system application for irrigation scheduling. Transactions of the ASAE, 35(6), 1833–1838. https://doi.org/10.13031/2013.28803
Plantix. Plantix Analytics. https://plantix.net/en/analytics/
Porto, S. M. C., Arcidiacono, C., Anguzza, U., & Cascone, G. (2014). Development of an information system for the traceability of citrus-plant nursery chain related to the Italian National Service for Voluntary Certification. Agricultural Engineering International: CIGR Journal, 16(2), 208–216. https://cigrjournal.org/index.php/Ejounral/article/view/2707
in nigeria. International Journal of Advanced Research in Computer and Communication Engineering, 7(7), 42–47.
Orlandini, S., Massetti, L., & Marta, A. D. (2008). An agrometeorological approach for the simulation of Plasmopara viticola. Computers and Electronics in Agriculture, 64(2), 149–161. https://doi.org/10.1016/j.compag.2008.04.004
Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79(2), 131–143. https://doi.org/10.1016/j.still.2004.07.002
Panpatte, Deepak. (2018). Artificial Intelligence in Agriculture: An Emerging Era of Research.
Park, D.-H., & Park, J.-W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640–3651. https://doi.org/10.3390/s110403640
Partel, V., Charan Kakarla, S., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture, 157, 339–350. https://doi.org/10.1016/j.compag.2018.12.048
Pasqual, G. M. (1994). Development of an expert system for the identification and control of weeds in wheat, triticale, barley and oat crops. Computers and Electronics in Agriculture, 10(2), 117–134. https://doi.org/10.1016/0168-1699(94)90016-7
Pasqual, G. M., & Mansfield, J. (1988). Development of a prototype expert system for identification and control of insect pests. Computers and Electronics in Agriculture, 2(4), 263–276. https://doi.org/10.1016/0168-1699(88)90002-6
Patel, K. G., & Patil, M. S. (2022). Artificial intelligence in agriculture. International Journal for Research in Applied Science and Engineering Technology, 10(2), 624–627. https://doi.org/10.22214/ijraset.2022.40308
Patil, S. S., & Thorat, S. A. (2016). Early detection of grapes diseases using machine learning and IoT. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802887
Patil, S. S., Dhandra, B. V., Angadi, U. B., Shankar, A. G., & Joshi, N. (2009). Web based Expert System for Diagnosis of MicroNutrients’ Deficiencies in Crops. Proceedings of the World Congress on Engineering and Computer Science 2009, San Francisco, USA.
Pawar, S. B. (2020). Artificial Intelligence in Agriculture. International Journal of Engineering Research & Technology, 8(5).
Paymode, A. S., & Malode, V. B. (2022). Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg. Artificial Intelligence in Agriculture, 6, 23–33. https://doi.org/10.1016/j.aiia.2021.12.002
Perez-Ortiz, M., Gutierrez, P. A., Pena, J. M., Torres-Sanchez, J., Lopez-Granados, F., & Hervas-Martinez, C. (2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles. 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/10.1109/SSCI.2016.7849987
Pérez-Zavala, R., Torres-Torriti, M., Cheein, F. A., & Troni, G. (2018). A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 151, 136–149. https://doi.org/10.1016/j.compag.2018.05.019
Peshin, R., Jayaratne, K. S. U., & Sharma, R. (2014). Ipm extension. In Integrated Pest Management (pp. 493–529). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00026-9
Peskett, M. (2019). IBM’s instant AI Soil Analysis - the AgroPad. Food and Farming Technology. https://www.foodandfarmingtechnology.com/news/data-analytics/ibms-instant-ai-soil-analysis-the-agropad.html
Peters, D. P. C., McVey, D. S., Elias, E. H., Pelzel‐McCluskey, A. M., Derner, J. D., Burruss, N. D., et al. (2020). Big data–model integration and AI for vector‐borne disease prediction. Ecosphere, 11(6). https://doi.org/10.1002/ecs2.3157
Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., & Stentz, A. (2002). The Demeter System for Automated Harvesting. Autonomous Robots, 13(1), 9–20. https://doi.org/10.1023/A:1015622020131
Pinto, D. B., Castro, I., & Vicente, A. A. (2006). The use of TIC’s as a managing tool for traceability in the food industry. Food Research International, 39(7), 772–781. https://doi.org/10.1016/j.foodres.2006.01.015
Plant, R. E. (1989). An artificial intelligence based method for scheduling crop management actions. Agricultural Systems, 31(1), 127–155. https://doi.org/10.1016/0308-521X(89)90017-6
Plant, R. E., Horrocks, R. D., Grimes, D. W., & Zelinski, L. J. (1992). Calex/cotton: An integrated expert system application for irrigation scheduling. Transactions of the ASAE, 35(6), 1833–1838. https://doi.org/10.13031/2013.28803
Plantix. Plantix Analytics. https://plantix.net/en/analytics/
Porto, S. M. C., Arcidiacono, C., Anguzza, U., & Cascone, G. (2014). Development of an information system for the traceability of citrus-plant nursery chain related to the Italian National Service for Voluntary Certification. Agricultural Engineering International: CIGR Journal, 16(2), 208–216. https://cigrjournal.org/index.php/Ejounral/article/view/2707
in nigeria. International Journal of Advanced Research in Computer and Communication Engineering, 7(7), 42–47.
Orlandini, S., Massetti, L., & Marta, A. D. (2008). An agrometeorological approach for the simulation of Plasmopara viticola. Computers and Electronics in Agriculture, 64(2), 149–161. https://doi.org/10.1016/j.compag.2008.04.004
Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79(2), 131–143. https://doi.org/10.1016/j.still.2004.07.002
Panpatte, Deepak. (2018). Artificial Intelligence in Agriculture: An Emerging Era of Research.
Park, D.-H., & Park, J.-W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640–3651. https://doi.org/10.3390/s110403640
Partel, V., Charan Kakarla, S., & Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture, 157, 339–350. https://doi.org/10.1016/j.compag.2018.12.048
Pasqual, G. M. (1994). Development of an expert system for the identification and control of weeds in wheat, triticale, barley and oat crops. Computers and Electronics in Agriculture, 10(2), 117–134. https://doi.org/10.1016/0168-1699(94)90016-7
Pasqual, G. M., & Mansfield, J. (1988). Development of a prototype expert system for identification and control of insect pests. Computers and Electronics in Agriculture, 2(4), 263–276. https://doi.org/10.1016/0168-1699(88)90002-6
Patel, K. G., & Patil, M. S. (2022). Artificial intelligence in agriculture. International Journal for Research in Applied Science and Engineering Technology, 10(2), 624–627. https://doi.org/10.22214/ijraset.2022.40308
Patil, S. S., & Thorat, S. A. (2016). Early detection of grapes diseases using machine learning and IoT. 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–5. https://doi.org/10.1109/CCIP.2016.7802887
Patil, S. S., Dhandra, B. V., Angadi, U. B., Shankar, A. G., & Joshi, N. (2009). Web based Expert System for Diagnosis of MicroNutrients’ Deficiencies in Crops. Proceedings of the World Congress on Engineering and Computer Science 2009, San Francisco, USA.
Pawar, S. B. (2020). Artificial Intelligence in Agriculture. International Journal of Engineering Research & Technology, 8(5).
Paymode, A. S., & Malode, V. B. (2022). Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg. Artificial Intelligence in Agriculture, 6, 23–33. https://doi.org/10.1016/j.aiia.2021.12.002
Perez-Ortiz, M., Gutierrez, P. A., Pena, J. M., Torres-Sanchez, J., Lopez-Granados, F., & Hervas-Martinez, C. (2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles. 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/10.1109/SSCI.2016.7849987
Pérez-Zavala, R., Torres-Torriti, M., Cheein, F. A., & Troni, G. (2018). A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 151, 136–149. https://doi.org/10.1016/j.compag.2018.05.019
Peshin, R., Jayaratne, K. S. U., & Sharma, R. (2014). Ipm extension. In Integrated Pest Management (pp. 493–529). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00026-9
Peskett, M. (2019). IBM’s instant AI Soil Analysis - the AgroPad. Food and Farming Technology. https://www.foodandfarmingtechnology.com/news/data-analytics/ibms-instant-ai-soil-analysis-the-agropad.html
Peters, D. P. C., McVey, D. S., Elias, E. H., Pelzel‐McCluskey, A. M., Derner, J. D., Burruss, N. D., et al. (2020). Big data–model integration and AI for vector‐borne disease prediction. Ecosphere, 11(6). https://doi.org/10.1002/ecs2.3157
Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., & Stentz, A. (2002). The Demeter System for Automated Harvesting. Autonomous Robots, 13(1), 9–20. https://doi.org/10.1023/A:1015622020131
Pinto, D. B., Castro, I., & Vicente, A. A. (2006). The use of TIC’s as a managing tool for traceability in the food industry. Food Research International, 39(7), 772–781. https://doi.org/10.1016/j.foodres.2006.01.015
Plant, R. E. (1989). An artificial intelligence based method for scheduling crop management actions. Agricultural Systems, 31(1), 127–155. https://doi.org/10.1016/0308-521X(89)90017-6
Plant, R. E., Horrocks, R. D., Grimes, D. W., & Zelinski, L. J. (1992). Calex/cotton: An integrated expert system application for irrigation scheduling. Transactions of the ASAE, 35(6), 1833–1838. https://doi.org/10.13031/2013.28803
Plantix. Plantix Analytics. https://plantix.net/en/analytics/
Porto, S. M. C., Arcidiacono, C., Anguzza, U., & Cascone, G. (2014). Development of an information system for the traceability of citrus-plant nursery chain related to the Italian National Service for Voluntary Certification. Agricultural Engineering International: CIGR Journal, 16(2), 208–216. https://cigrjournal.org/index.php/Ejounral/article/view/2707
(ICICCS), 937–942. https://doi.org/10.1109/ICICCS51141.2021.9432187
Sharples, M., & Domingue, J. (2016). The blockchain and kudos: A distributed system for educational record, reputation and reward. In K. Verbert, M. Sharples, & T. Klobučar (Eds.), Adaptive and Adaptable Learning (Vol. 9891, pp. 490–496). Springer International Publishing. https://doi.org/10.1007/978-3-319-45153-4_48
Shekhar, Y., Dagur, E., Mishra, S., Tom, R. J., Veeramanikandan, M., & Sankaranarayanan, S. (2017). Intelligent IoT Based Automated Irrigation System. International Journal of Applied Engineering Research, 12(18), 7306–7320.
Sicat, R. S., Carranza, E. J. M., & Nidumolu, U. B. (2005). Fuzzy modeling of farmers’ knowledge for land suitability classification. Agricultural Systems, 83(1), 49–75. https://doi.org/10.1016/j.agsy.2004.03.002
Sikorski, J. J., Haughton, J., & Kraft, M. (2017). Blockchain technology in the chemical industry: Machine-to-machine electricity market. Applied Energy, 195, 234–246. https://doi.org/10.1016/j.apenergy.2017.03.039
Siraj, F., & Arbaiy, N. (2006). Integrated pest management system using fuzzy expert system. In: Proceedings of Knowledge Management International Conference & Exhibition (KMICE) , 6 - 8 June 2006 Legend Hotel Kuala Lumpur, Malaysia. Universiti Utara Malaysia, Sintok, pp. 169-176.
Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61(1), 63–78. https://doi.org/10.1016/j.compag.2007.05.008
Song, H., & Yong, H. (2005). Crop nutrition diagnosis expert system based on artificial neural networks. Third International Conference on Information Technology and Applications (ICITA’05), 1, 357–362. https://doi.org/10.1109/ICITA.2005.108
Stigliani, L., & Resina, C. (1993). Seloma: Expert system for weed management in herbicide-intensive crops. Weed Technology, 7(3), 550–559. https://doi.org/10.1017/S0890037X00037337
Stone, N. D., & Toman, T. W. (1989). A dynamically linked expert-database system for decision support in Texas cotton production. Computers and Electronics in Agriculture, 4(2), 139–148. https://doi.org/10.1016/0168-1699(89)90031-8
Subeesh, A., Bhole, S., Singh, K., Chandel, N. S., Rajwade, Y. A., Rao, K. V. R., et al. (2022). Deep convolutional neural network models for weed detection in polyhouse grown bell peppers. Artificial Intelligence in Agriculture, 6, 47–54. https://doi.org/10.1016/j.aiia.2022.01.002
Sujaritha, M., Annadurai, S., Satheeshkumar, J., Kowshik Sharan, S., & Mahesh, L. (2017). Weed detecting robot in sugarcane fields using fuzzy real time classifier. Computers and Electronics in Agriculture, 134, 160–171. https://doi.org/10.1016/j.compag.2017.01.008
Syers, J. K. (1997). Managing soils for long-term productivity. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1356), 1011–1021. https://doi.org/10.1098/rstb.1997.0079
Tajik, S., Ayoubi, S., & Nourbakhsh, F. (2012). Prediction of soil enzymes activity by digital terrain analysis: Comparing artificial neural network and multiple linear regression models. Environmental Engineering Science, 29(8), 798–806. https://doi.org/10.1089/ees.2011.0313
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58–73. https://doi.org/10.1016/j.aiia.2020.04.002
Tassis, L. M., & Krohling, R. A. (2022). Few-shot learning for biotic stress classification of coffee leaves. Artificial Intelligence in Agriculture, 6, 55–67. https://doi.org/10.1016/j.aiia.2022.04.001
Teal, S. L., & Rudnicky, A. I. (1992). A performance model of system delay and user strategy selection. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’92, 295–305. https://doi.org/10.1145/142750.142818
Teng, G., & Li, C. (2003). Development of non-contact measurement on plant growth in greenhouses using machine vision. 2003, Las Vegas, NV July 27-30, 2003. 2003, Las Vegas, NV July 27-30, 2003. https://doi.org/10.13031/2013.14104
The State of Food and Agriculture. (2017). Leveraging Food Systems for Inclusive Rural Transformation | Developing Capacity for Strengthening Food Security and Nutrition; Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/in-action/fsn-caucasus-asia/resources/detail/es/c/1104519/
Tilva, V., Patel, J., & Bhatt, C. (2013). Weather based plant diseases forecasting using fuzzy logic. 2013 Nirma University International Conference on Engineering (NUiCONE), 1–5. https://doi.org/10.1109/NUiCONE.2013.6780173
Tobal. (2014). Weeds identification using evolutionary artificial intelligence algorithm. Journal of Computer Science, 10(8), 1355–1361. https://doi.org/10.3844/jcssp.2014.1355.1361
Tremblay, N., Bouroubi, M. Y., Panneton, B., Guillaume, S., Vigneault, P., & Bélec, C. (2010). Development and validation of fuzzy logic inference to determine optimum rates of N for corn on the basis of field and crop features. Precision Agriculture, 11(6), 621–635. https://doi.org/10.1007/s11119-010-9188-z
Umair, S.M., & Usman, R. (2010). Automation of Irrigation System Using ANN based Controller. International Journal of Electrical & Computer Sciences, 10(2).
United Nations. (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. United Nations. https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100
Valdés-Vela, M., Abrisqueta, I., Conejero, W., Vera, J., & Ruiz-Sánchez, M. C. (2015). Soft computing applied to stem water potential estimation: A fuzzy rule based approach. Computers and Electronics in Agriculture, 115, 150–160. https://doi.org/10.1016/j.compag.2015.05.019
Van der Werf, H. M. G., & Zimmer, C. (1998). An indicator of pesticide environmental impact based on a fuzzy expert system. Chemosphere, 36(10), 2225–2249. https://doi.org/10.1016/S0045-6535(97)10194-1
Van Henten, E. J., Hemming, J., van Tuijl, B. A. J., Kornet, J. G., Meuleman, J., Bontsema, J., et al. (2002). An Autonomous Robot for Harvesting Cucumbers in Greenhouses. Autonomous Robots. Autonomous Robots, 13(3), 241–258. https://doi.org/10.1023/A:1020568125418
Varatharajalu, K., & Ramprabu, J. (2018). Wireless Irrigation System via Phone Call & SMS. International Journal of Engineering and Advanced Technology, 8(2S), 397–401.
Verma, A., Agrawal, M., Gupta, K., Jamshed, A., Mishra, A., Khatter, H., et al. (2022). Plantosphere: Next generation adaptive and smart agriculture system. Journal of Sensors, 2022, 1–10. https://doi.org/10.1155/2022/5421312
VineView. Aerial Vineyard Mapping- Vigor & Grapevine Disease. https://vineview.com/
Wakie, T. T., Neven, L. G., Yee, W. L., & Lu, Z. (2019). The establishment risk of lycorma delicatula (Hemiptera: Fulgoridae) in the united states and globally. Journal of Economic Entomology, toz259. https://doi.org/10.1093/jee/toz259
Wang, X., Zhang, M., Zhu, J., & Geng, S. (2008). Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (Ann). International Journal of Remote Sensing, 29(6), 1693–1706. https://doi.org/10.1080/01431160701281007
Wang, Y. T., Zhang, H. X., Li, J. C., & Wu, Y. Y. (2013). Application and research of agricultural irrigation fertilization intelligent control system based on gprs dtu. Applied Mechanics and Materials, 441, 783–787. https://doi.org/10.4028/www.scientific.net/AMM.441.783
Wathes, C. M., Kristensen, H. H., Aerts, J.-M., & Berckmans, D. (2008). Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Computers and Electronics in Agriculture, 64(1), 2–10. https://doi.org/10.1016/j.compag.2008.05.005
Wu, J. (2022). Crop growth monitoring system based on agricultural internet of things technology. Journal of Electrical and Computer Engineering, 2022, 1–10. https://doi.org/10.1155/2022/8466037
Xu, J., Gu, B., & Tian, G. (2022). Review of agricultural IoT technology. Artificial Intelligence in Agriculture, 6, 10–22. https://doi.org/10.1016/j.aiia.2022.01.001
Yang, C. C., Prasher, S. O., Landry, J., & Ramaswamy, H. S. (2002). Development of neural networks for weed recognition in corn fields. Transactions of the ASAE, 45(3). https://doi.org/10.13031/2013.8854
Yang, C.-C., Prasher, S. O., Landry, J.-A., & Ramaswamy, H. S. (2003). Development of a herbicide application map using artificial neural networks and fuzzy logic. Agricultural Systems, 76(2), 561–574. https://doi.org/10.1016/S0308-521X(01)00106-8
Yang, Y., & Zhao, X. P. (2013). Research of organic vegetables safety traceability system in agricultural enterprise based on rfid technology. Applied Mechanics and Materials, 469, 473–476. https://doi.org/10.4028/www.scientific.net/AMM.469.473
Yialouris, C. P., Passam, H. C., Sideridis, A. B., & Métin, C. (1997). VEGES—A multilingual expert system for the diagnosis of pests, diseases and nutritional disorders of six greenhouse vegetables. Computers and Electronics in Agriculture, 19(1), 55–67. https://doi.org/10.1016/S0168-1699(97)00032-X
Yong, W., Shuaishuai, L., Li, L., Minzan, L., Ming, L., Arvanitis, K. G., et al. (2018). Smart sensors from ground to cloud and web intelligence. IFAC-PapersOnLine, 51(17), 31–38. https://doi.org/10.1016/j.ifacol.2018.08.057
Yu, X., Zhongfu, S., Keming, D., & Xin, H. (2013). Design and realization of IOT-based diagnosis and management system for wheat production. Transactions of the Chinese Society of Agricultural Engineering, 29(5), 117–124.
Zhai, Y., Thomasson, J. A., Boggess, J. E., & Sui, R. (2006). Soil texture classification with artificial neural networks operating on remote sensing data. Computers and Electronics in Agriculture, 54(2), 53–68. https://doi.org/10.1016/j.compag.2006.08.001
Zhang D.N., Zhou Z.N., & Zhang M. (2015). Water-saving irrigation system based on wireless communication. Chemical Engineering Transactions, 46, 1075–1080. https://doi.org/10.3303/CET1546180
Zhang, S., Ye, H., Mao, J., & Shi, Y. (2013). Remote control of smart sprinkler system based on CAN-
BUS. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 44, 292–296.
Zhao, Z., Chow, T. L., Rees, H. W., Yang, Q., Xing, Z., & Meng, F.-R. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture, 65(1), 36–48. https://doi.org/10.1016/j.compag.2008.07.008
Zhu, Y., Cao, Z., Lu, H., Li, Y., & Xiao, Y. (2016). In-field automatic observation of wheat heading stage using computer vision. Biosystems Engineering, 143, 28–41. https://doi.org/10.1016/j.biosystemseng.2015.12.015